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Abstract

We compute a closed-form expression for the moment generating function f̂(x;λ, α) = 1
λEx(e

αLτ ), where Lt is the
local time at zero for standard Brownian motion with reflecting barriers at 0 and b, and τ ∼ Exp(λ) is independent

of W . By analyzing how and where f̂(x; ·, α) blows up in λ, a large-time large deviation principle (LDP) for Lt/t
is established using a Tauberian result and the Gärtner-Ellis Theorem.
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1. Introduction

Diffusion processes with reflecting barriers have found many applications in finance, economics, biology, queueing
theory, and electrical engineering. In a financial context, we recall the currency exchange rate target-zone models
in [KRU91] (see also [SVE91, BER92, DJ94], and [BAL98]), where the exchange rate is allowed the float within two
barriers; asset pricing models with price caps (see [HAN99]); interest rate models with targeting by the monetary
authority (e.g.[FAR03]); short rate models with reflection at zero (e.g. [GOL97, GOR04]); and stochastic volatility
models (most notably the Heston and Schöbel-Zhu models). In queueing theory, diffusions with reflecting barriers
arise as heavy-traffic approximations of queueing systems and reflected Brownian motions is ubiquitous in queueing
models [HAR85, ABA87a, ABA87b]. More recently, reflected Ornstein-Uhlenbeck(OU) and reflected affine pro-
cesses have been studied as approximations of queueing systems with reneging or balking [WAR03a, WAR03b].
Applications of reflected OU processes in mathematical biology are discussed in [RIC87]. Doubly reflected Brow-
nian motion also arises naturally in the solution for the optimal trading strategy in the large-time limit for an
investor who is permitted to trade a safe and a risky asset under the Black-Scholes model, subject to proportional
transaction costs with exponential or power utility (see [GM13] and [GGMS12] respectively).

The asymptotics in this article are obtained using a Tauberian theorem. Tauberian results typically allow us to
deduce the large-time or tail behavior of a quantity of interest based on the behavior of its Laplace transform (see
Feller[FEL71] or the excellent monograph of Bingham et al.[BGT87] for details or [BF08] for applications to tail
asymptotics for time-changed exponential Lévy models). In this article, we compute a closed-form expression for the

moment generating function (mgf) f̂(x;λ, α) = 1
λEx(e

αLτ ), where Lt is the local time at zero for standard Brownian
motion with reflecting barriers at 0 and b, and τ is an independent exponential random variable with parameter λ.
We do this by first deriving the relevant ODE and boundary conditions for f̂(x;λ, α) using an augmented filtration

and computing the optional projection, and we then solve this ODE in closed form. f̂(x;λ, α) does not appear

amenable to Laplace inversion; however from an analysis of the location of the pole of f̂(x; ·, α), we can compute
the re-scaled log mgf limit V (α) = limt→∞

1
t logEx(e

αLt) for α ∈ R using the Tauberian result in Proposition 4.3
in [KOR02] via the so-called Fejér kernel. From this we then establish a large deviation principle for Lt/t as t → ∞
using the Gärtner-Ellis Theorem from large deviations theory,

Throughout the paper, we let Px(·) = P(·|X0 = x) denote the law of X given its initial value at time 0 for any
x ∈ [0, b], and by Ex(·) the expectation under Px. Further, we let E ≡ E0.
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2. The modelling set up

We begin by defining the Brownian motion X with two reflecting boundaries. Let Wt be standard Brownian
motion starting at 0. Then for any x ∈ [0, b], there is a unique pair of non-decreasing, continuous adapted processes
(L,U), starting at 0, such that

Xt = x+Wt + Lt − Ut ∈ [0, b], ∀t ≥ 0.

such that L can only increase when X = 0 and Ut can only increase when X = b. Existence and uniqueness follow
easily from the more general work of Lions&Sznitman[LS84] the earlier work of Skorokhod[SKO62], or a bare-hands
proof can be given by successive applications of the standard one-sided reflection mapping using a sequence of
stopping times (see [WIL92].)

It can be shown that

lim
t→∞

Lt/t = E(Lτb+τ ′)/E(τ b + τ ′), lim
t→∞

Ut/t = E(Uτb+τ ′)/E(τ b + τ ′),

lim
t→∞

1

t
Var(Lt) = σ2

L, lim
t→∞

1

t
Var(Ut) = σ2

U ,

where τ b = inf{t : Xt = b}, τ ′ = inf{t ≥ τ b : Xt = 0}(see [WIL92]) for some non-negative constants σL, σU .

Proposition 2.1. Let τ denote an independent exponential random variable with parameter λ. Then for α < 0,

f̂(x) ≡ f̂(x;λ, α) :=
1

λ
Ex(e

αLτ ) =

∫ ∞

0

e−λt Ex(e
αLt)dt

is smooth on (0, b) and satisfies the following ODE

1

2
f̂xx = λf̂ − 1, f̂x(0) + αf̂(0) = f̂x(b) = 0. (1)

Proof. We first show that f̂ ∈ C∞(0, b). To this end, note that for x ∈ [0, b],

Ex(e
αLτ ) = Px(τ > H0)E0(e

αLτ ) + Px(τ ≤ H0)

where Hx = inf{t : Xt = x} is the first hitting time to x. The law of (b−Xt; t ∈ [0,H0]) given Xt = x is the same
as that of (|Wt|; t ∈ [0, Hb]) given |W0| = b− x. Thus by Eq. 2.0.1 on page 355 of [BS02] we have

Px(τ > H0) = Ex(e
−λH0) =

cosh((b− x)
√
2λ)

cosh(b
√
2λ)

.

It follows that

Ex(e
αLτ ) =

cosh((b− x)
√
2λ)

cosh(b
√
2λ)

[E0(e
αLτ )− 1] + 1 .

That is,

f̂(x) =
cosh((b− x)

√
2λ)

cosh(b
√
2λ)

(f̂(0)− 1

λ
) +

1

λ
, ∀x ∈ [0, b] . (2)

It can then be easily seen from (2) that f̂ ∈ C∞(0, b).

To show that f̂ satisfies (1) and the boundary conditions, we construct a martingale that is adapted to the
filtration generated byX. More specifically, we introduce the natural filtration Ft = σ(Xs; s ≤ t) and the augmented
filtration F t = Ft∨σ(1{τ<t}), where σ(1{τ<t}) is the sigma algebra generated by 1{τ<t}. Then we have a uniformly

bounded, and hence uniformly integrable F t-martingale:

M t := E(eαLτ |F t) = 1{τ<t}e
αLτ + 1{τ≥t}e

αLtEXt(e
αLτ ) = 1{τ<t}e

αLτ + 1{τ≥t}e
αLtλf̂(Xt) .

We now define the optional projection of M t: using the fact that X and τ are independent, we have

Mt = E(M t|Ft) = λ

∫ t

0

eαLs−λsds + eαLt−λtλf̂(Xt) .
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Further, Mt is a Ft-martingale, in that for all t > s we have

E(Mt|Fs) = E(E(Mt|Ft)|Fs) = E(M t|Fs) = E(E(M t|Fs)|Fs) = E(Ms|Fs) = Ms.

Applying Itō’s lemma to Mt, we have that

dMt = eαLt−λt

[
λdt+ λf̂(Xt)(αdLt − λdt) +

1

2
λf̂xx(Xt)dt+ λf̂x(Xt)(dWt + dLt − dUt)

]
.

But for Mt to be a martingale, we must have

1

2
f̂xx(x)− λf̂(x) + 1 = 0, f̂x(0) + αf̂(0) = 0, f̂x(b) = 0.

This completes the proof.

Solving the ODE in Proposition 2.1 we obtain the following result:

Proposition 2.2.

f̂(x;λ, α) =
1

λ
+ ex

√
2λAλ(α) + e−x

√
2λBλ(α) (3)

for λ > 0, α < 0, where

Aλ(α) =
αe−b

√
2λ/ cosh(b

√
2λ)

2λ [α∗(λ)− α]
, Bλ(α) = e2

√
2λ bAλ(α), α

∗(λ) =
√
2λ tanh(b

√
2λ). (4)

Remark 2.3. Observe that the expression for f̂(x) involves
√
λ, which has a branch point at λ = 0. However, f̂

remains a continuous function across the branch cut at λ = 0; thus f̂ is an analytic function of λ in some punctured
disc about λ = 0. As limλ→0 λ · f̂(λ) = 0, we conclude that λ = 0 is a removable singularity.

Remark 2.4. It can be verified that α∗(·) in (4) is a strictly increasing mapping from [0,∞) onto [0,∞). Further,
we may analytically extend α∗(·) to get a strictly increasing, strictly concave, smooth real-valued function that maps

(− π2

8b2 ,∞) onto R.

3. Large-time asymptotics

In this section, we characterize the large-time behaviour of Lt. To this end, let us consider the inverse of α∗,
V (α) := (α∗)−1(α) for α ∈ R. From Remark 2.4, we know that V is a strictly increasing, strictly convex smooth

function, with range (− π2

8b2 ,∞).

Lemma 3.1. The equality (3) also holds for all α ∈ R, λ ∈ C such that ℜ(λ) > V (α).

Proof. See Appendix A.

Proposition 3.2. We have the following large-time behaviour for the moment generating function of Lt:

lim
t→∞

1

t
logEx(e

αLt) = V (α) < ∞ ∀α ∈ R.

Proof. See Appendix B.

Remark 3.3. Note that V (·) does not depend on the starting value x, due to the ergodicity of X.

The following lemma will be needed in the statement of the large deviation principle in the theorem that follows.

Lemma 3.4. (a) Define V ∗(x) := supα∈R[αx− V (α)] for all x ≥ 0. Then we have

V ∗(x) =

{
xα∗(λ∗)− λ∗, for x > 0
π2/(8b2), for x = 0

, (5)

where λ∗ = λ∗(x) is the unique solution of (α∗)′(λ) = 1/x for fixed x > 0.

(b) V ∗ ∈ C([0,∞)) ∩ C1((0,∞)) and V ∗ is a strictly convex function on (0,∞).

(c) V ∗ attains its minimum value of zero uniquely at x∗ = 1
2b .
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Proof. See Appendix C.

Theorem 3.5. Lt/t satisfies a large deviation principle on [0,∞) as t → ∞ with a strictly convex rate function
V ∗(x).

Proof. From Lemma 3.4, we know that V ∗ is a strictly convex function on (0,∞). Hence the set of exposed points
of V ∗ is (0,∞) (see Definition 2.3.3 in [DZ98]), and since D0

V = (−∞,∞), the exposing hyperplane will always lie
in D0

V . Therefore, by the Gärtner-Ellis Theorem (see Theorem 2.3.6 in [DZ98]), Lt/t satisfies the LDP with convex
rate function V ∗(x).

Appendix A. Proof of Lemma 3.1

Recall from Propositions 2.1 and 2.2 that, for α < 0 and λ > 0,∫ ∞

0

e−λt Ex(e
αLt)dt = f̂(x;λ, α) =

1

λ
+ ex

√
2λAλ(α) + e−x

√
2λBλ(α) (B-1)

where Aλ(α) =
αe−b

√
2λ/ cosh(b

√
2λ)

2λ [α∗(λ)−α] and Bλ(α) = e2
√
2λ bAλ(α). We wish to show that (B-1) still holds for a wider

range of α and λ values using analytic continuation. We first note that f̂ has a singularity when α = α∗(λ), and
by Theorems 5a and 5b on page 57 in [WID46], we know that the abscissa of convergence for a Laplace transform
is a point of singularity and the Laplace transform is analytic in its region of convergence.

We are interested in the values of α ∈ R and λ ∈ C such that the Laplace transform f̂(x;λ, α) =
∫∞
0

e−λt Ex(e
αLt)dt

is finite. We recall the following fact: for any fixed x ∈ [0, b],

(†) f̂(x;λ, α) < ∞ for α < 0 and λ > 0.
We now proceed in three stages:

• Fix λ > 0 (so λ ∈ R). We apply the Widder results with α as the Laplace variable, i.e. we consider

E(eαLτ ) =

∫ ∞

0

eαydF (y) ,

where F (y) is the distribution function of Lτ . By (†), the region of convergence is non-empty. We can then
extend the region of convergence up to α∗(λ) > 0, as α∗(λ) is the point of singularity.

• Fix α < 0. We apply the Widder results again, but we now take λ as the Laplace variable. By (†), the
region of convergence is non-empty. According to Widder, the abscissa of convergence (say λc) is a point of

singularity and f̂(x;λ, α) is analytic in λ when ℜ(λ) > λc. So we are looking at a point of singularity on the
real line, and this is the value of λc that satisfies α∗(λc) = α. Or, in other words, λc = (α∗)−1(α) = V (α).

Thus, by Widder, f̂(x;λ, α) is finite when ℜ(λ) > V (α).

• Fix α > 0. We apply Widder’s theorem using λ as the Laplace variable. By the first bullet point, we know
that there exists some λ ∈ R (such that α < α∗(λ)), for which f̂(x;λ, α) is finite. Hence, the region of

convergence of f̂(x;λ, α) is non-empty for this α. Then, by Widder, the abscissa of convergence λc is a point

of singularity and f̂(x;λ, α) is analytic for ℜ(λ) > λc. The singularity is at α = α∗(λ). Solving for points of

singularity on the real line i.e. solving for λc in α = α∗(λc), gives us λc = V (α) and so f̂(x;λ, α) converges
when ℜ(λ) > λc = V (α).

This gives the region of λ and α for which f̂(x;λ, α) converges: for every α ∈ R and λ ∈ C such that ℜ(λ) > V (α),

and f̂(x;λ, α) is analytic in this region.

Appendix B. Proof of Proposition 3.2

From the known large-time behaviour of the local time of standard Brownian motion, we expect that Ex(e
αLt) ∼

const.× eU(α)t as t → ∞, for some non-decreasing function U(α) to be determined. Then as t → ∞,

f̂(x;λ, α) =

∫ ∞

0

e−λt Ex(e
αLt)dt ∼

∫ ∞

0

e−λt const.× eU(α)tdt, (C-1)
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and f̂(x;λ, α) blows up when λ = U(α) (for α fixed). But we know that f̂(x;λ, α) blows up at α = α∗(λ); thus we
expect that λ = U(α∗(λ)), i.e. U(α) = (α∗)−1(α) = V (α). We now make this statement rigorous using a variant of
Ikehara’s Tauberian Theorem (see e.g. Theorem 17 on page 233 in Widder[WID46]).

We first define a positive function v on R:

v(t) ≡ v(t;x, α) := 1t≥0 e
−V (α)tEx(e

αLt).

Then the Laplace transform of v is given by

v̂(λ) =

∫ ∞

0

e−λtv(t)dt =

∫ ∞

0

e−(λ+V (α))tEx(e
αLt)dt = f̂(x;λ+ V (α), α) ,

which, by Lemma 3.1 is analytic for all λ ∈ C such that ℜ(λ) > 0. We now need to characterize how v̂(λ) blows up as

ℜ(λ) ↓ 0. To this end, looking at the expression for Aλ(α), we notice that Aλ(α) has a pole at λ = V (α) ∈ (− π2

8b2 ,∞),

and is analytic elsewhere for ℜ(λ) > − π2

8b2 (see Remarks 2.3 and 2.4). It is also easily seen that, α∗′(λ) > 0 for all

λ ∈ (− π2

8b2 ,∞). Hence, by the Laurent expansion of v̂(λ) at 0, there exists a function g(λ), which is analytic for all
λ ∈ C with ℜ(λ) > −ε and |ℑ(λ)| ≤ c for some constants ε, c > 0, such that

v̂(λ) =
C

λ
+ g(λ)

for some constant C which we find to be positive (C is the residue of v̂ at λ = 0). g(x + iy) is continuous on
D := {(x, y) : |x| ≤ ε, |y| ≤ c}, thus g(x+ iy) is uniformly continuous on D, so g(x+ iy) → g(iy) uniformly as x ↓ 0
for any fixed y ∈ [−c, c]. Moreover, for any x > 0∫ c

−c

|v̂(x+ iy)− C

x+ iy
− g(iy)| dy =

∫ c

−c

|g(x+ iy)− g(iy)|dy

Since g is analytic everywhere and uniformly continuous, if we take the limit as x → 0, the above integral converges
to 0, so the function g(x+ i·) also converges to g(i·) in L1([−c, c]), as x ↓ 0.

We can now apply Proposition 4.3 in [KOR02] to obtain that for the “Fejér kernel” K(t) = 1−cos t
πt2 ,

lim
t→∞

∫ ct

−∞
v(t− s

c
) ·K(s)ds = C. (C-2)

We now proceed as in the proof of Theorem 4.2 in [KOR02] to show that v(t) = O(1) as t → ∞.

1. α > 0. In this case we know that Ex(e
αLt) is non-decreasing, so v(t) ≥ v(s)eV (α)(s−t) for all t ≥ s ≥ 0. For

any fixed a > 0, using (C-2) we have that

C = lim
t→∞

∫ ct

−∞
v(t− s

c
) ·K(s)ds ≥ lim sup

t→∞

∫ a

−a

v(t− s

c
) ·K(s)ds ≥ lim sup

t→∞
v(t− a

c
) e−2V (α) a

c

∫ a

−a

K(s)ds ,

which implies that

lim sup
t→∞

v(t) ≤ e2V (α) a
c∫ a

−a
K(s)ds

C < ∞ .

Hence, there exists a constant M > 0 such that v(t) ≤ M for all t. Similarly, for any fixed a > 0, we have

lim inf
t→∞

v(t+
a

c
) e2V (α) a

c

∫ a

−a

K(s)ds ≥ lim inf
t→∞

∫ a

−a

v(t− s

c
)K(s)ds

= lim inf
t→∞

(

∫ ct

−∞
+

∫ ∞

ct

−
∫ −a

−∞
−

∫ ∞

a

)v(t− s

c
)K(s)ds ≥ lim inf

t→∞
(

∫ ct

−∞
+

∫ ∞

ct

)v(t− s

c
)K(s)

− lim sup
t→∞

∫ −a

−∞
v(t− s

c
)K(s) − lim sup

t→∞

∫ ∞

a

v(t− s

c
)K(s) ≥ C − 4M

π

∫ ∞

a

1

s2
ds = C − 4M

πa
,

where we have used (C-2) and the fact that 0 ≤ K(t) ≤ 2
πt2 in the last inequality. Hence, for a > 0 sufficiently

large, we have

lim inf
t→∞

v(t) ≥ e−2V (α) a
c∫ a

−a
K(s)ds

(C − 4M/πa) > 0.
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2. α < 0. In this case we know that Ex(e
αLt) is non-increasing, so v(t) ≤ v(s)eV (α)(s−t) for all t ≥ s ≥ 0. Using

the same argument as above, we have, for any fixed a > 0,

Ce2V (α) a
c ≥ lim sup

t→∞
v(t+

a

c
)

∫ a

−a

K(s)ds,

(C − 4M

πa
) e−2V (α) a

c ≤ lim inf
t→∞

v(t− a

c
)

∫ a

−a

K(s)ds .

Hence for a > 0 sufficiently large, we have

0 ≤ e−2V (α) a
c∫ a

−a
K(s)ds

(C − 4M/πa) ≤ lim inf
t→∞

v(t) ≤ lim sup
t→∞

v(t) ≤ e2V (α) a
c∫ a

−a
K(s)ds

C < ∞ .

Hence, by Proposition 4.3 in [KOR02], the result follows.

Appendix C. Proof of Lemma 3.4

We break the proof into three parts:

(a) Computing the Legendre transform of V boils down to solving V ′(α) = x. But this is the same as solving
(V −1)′(λ) = 1

x for λ, when x > 0. Recall that V −1(·) = α∗(·) is known in closed form. Since (α∗)′′(λ) < 0

for all λ in the domain of α∗, i.e. λ > − π2

8b2 (from Remark 2.4), by the Inverse function theorem, λ∗(x) :=
((α∗)′)−1(1/x) is well-defined and λ∗ ∈ C1((0,∞)). Using the fact that α∗(λ∗) = V −1(λ∗), we have

V ∗(x) = xα∗ − V (α∗) = xα∗(λ∗(x))− λ∗(x) .

When x = 0, the definition of V ∗ in Lemma 3.4 gives us V ∗(0) = supα∈R{−V (α)} = − infα∈R{V (α)} =
− limα→−∞ V (α) = π2/(8b2), where the last two equalities hold because V is a monotonically increasing
function with range (−π2/(8b2),∞).

(b) By the Inverse function theorem, we know that λ∗ ∈ C1((0,∞)) and so is α∗, thus V ∗ ∈ C1((0,∞)). It is
easy to check that limx↓0{xα∗(λ∗(x)) − λ∗(x)} = π2/(8b2) = V ∗(0), which gives continuity of V ∗ up to the
boundary x = 0. Using (5), we obtain

(V ∗)′(x) = α∗(λ∗(x)) + x · (α∗)′(λ∗(x)) · (λ∗)′(x)− (λ∗)′(x)

= α∗(λ∗(x)) + x · 1
x
· (λ∗)′(x)− (λ∗)′(x) = α∗(λ∗(x))

(V ∗)′(x) = α∗(λ∗(x)). Thus we have (using again (α∗)′′ < 0)

(V ∗)′′(x) = (α∗)′(λ∗(x)) · (λ∗)′(x) =
1

x
· ((α∗)′−1)′(

1

x
) ·

(
− 1

x2

)
= − 1

x3
· 1

(α∗)′′(λ∗(x))
> 0 .

(c) Since V ∗ is strictly convex, it has a unique minimum. The unique minimum of V ∗ occurs at x∗ = ((V ∗)′)−1(0) =
V ′(0) = 1/α∗′(0) = 1

2b
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