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Abstract

We adapt the arguments in [Guy20],[Nutz22] to the problem of constructing a joint law µ∗ for two FX
rates X and Y consistent with observed European option prices on all three cross-rates. The usual Gibbs-type
exponential ansatz for µ∗ leads to three coupled integral equations for the Schrödinger potentials u(x), v(y), and
yw(x

y
), and we prove O( 1√

n
) convergence for the three marginals (in the total variation metric) for the running

average of the Sinkhorn iterates, assuming an admissible law exists (typically using ≈ 50 iterations in practice).
The primary application here is risk-neutral pricing of e.g. Basket, Quanto, Best-of or other varietals of Rainbow
options on X and Y so as to be consistent with all three smiles (or barrier options if we use the continuous-time
solution in Section 2.8), and risk-neutral pricing obviates the need to estimate the P-measure which is needed
for indifference pricing1. We also consider the finite-option case via the usual duality for one-period markets
between the (primal) entropy minimization problem over calibrated measures and the (dual) exponential utility
maximization problem à la Föllmer&Schied[FS04] and discuss convergence for Newton’s method in this setup.
The primal and dual here can also very often be solved directly (after appropriate discretization) using CVXPY
in Python with the MOSEK interior point solver2(even with a large number of options).3 4

1 Background

Regularized optimal transport methods have been a game changer for exotic option calibration problems in recent
years, because it allows the inner inf in the minmax problem which arises from dualization to be computed explicitly
(see e.g. pg 8 in [Guy20] or [GLOW22]). For regularized problems in the discrete-time setting, if we use an entropic
penalty then we can apply the Sinkhorn fixed point scheme (with provable convergence in certain standard cases,
see e.g.[Nutz22]), for which the most notable practical application has been a discrete-time solution to the SPX-
VIX calibration problem in [Guy20]. In particular, [Guy20] uses the Donsker-Varadhan/Gibbs variational formula
infµ∈P{H(µ|µ̄) − Eµ(X)} = − logEµ̄(eX) (see e.g. Eq 1.1 in Dupuis et al.[ACD15]) to simplify the sup inf which
arises from dualization.

In the continuous-time setting, we can also solve calibration problems using a Markov local and/or stochastic
volatility models with finite tradable European and/or VIX or barrier options using more general penalty terms,
by numerically solving a HJB equation which emerges from dualization (see e.g. [GLOW22] and further discussion
below), although rigorous duality results with viscosity solutions are more cumbersome to establish.

In principle, a bivariate [Carr09] Local Variance Gamma (LVG) model (see also [CN17]) can also give an exact
fit to three cross-smiles, but in practice the implied local correlation function ρloc(x, y) := (σX(x)2 + σY (y)2 −
σZ(x/y)2)/(2σX(x)σY (y)) that comes out from the three smiles typically falls outside [−1, 1] (similarly a two-
maturity standard Carr LVG model can be fitted to a single SPX and VIX smile with the same maturity, but in
practice the vol function for the 2nd epoch typically has a singularity, and a simpler (albeit somewhat unrealistic)
model that achieves the same goal is described in Eq 6.3 in [Guy20]).

Guo et al. [GLW22],[GLOW22] (see also [HL19] and [Guy22]) show how to construct a generalized local/stochastic
volatility model consistent with a finite number of European tradable options at multiple maturities by minimizing a
cost function over calibrated models which penalizes deviations from a standard reference model (e.g. Black-Scholes
or Heston), and then re-casting the problem via dualization as an (unconstrained) minmax problem in terms of a
non-linear HJB equation (so the cost function effectively regularizes the problem). If options at multiple maturities
are used in the calibration set, the HJB equation unfortunately also includes Dirac source terms (but this can be
avoided using a nested PDE), and this method is extended to include VIX options in section 3.3 in [GLOW22], by

re-expressing Vt for the reference model in terms of E(
∫ T
t
σ2
sds|Ft) (this analysis can be simplified using that VIX2

t

is just an affine function of Vt when the drift of V under the reference model has an affine drift). This approach is
mathematically rich and exciting albeit numerically intensive since it requires numerically solving a non-linear HJB
equation using e.g. fiddly implicit policy-iteration finite difference schemes, and then maximizing over the option

1recall that we cannot consistently estimate drift parameters for a semimartingale on a finite interval even with continuous observation.
2We thank Joseph Sullivan and Zhuoran Li for demonstrating this.
3the number of variables m for the dual is significantly smaller than the primal since m is linear in the number of constraints.
4We thank David Hobson and Amir Dembo for sharing their insights.
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weights vector. If path-dependent options are included in the calibration set we also have the issue that the prices
may admit arbitrage.

[JLO23] construct the two-maturity Bass martingale M , by considering a standard 1d Brownian motion B
with initial distribution α0 with Mt = E(F1(BT )|FBt ). If µt denotes the density of Mt, then from elementary
arguments we can easily check that µt = (R1−t ∗ F )#(Rt ∗ α0) (where Rt is the Brownian density and # denotes
the pushforward). If we take µ0 and µ1 as given target laws and evaluate the equation for µt at t = 0 and t = 1, we
obtain two coupled integral equations for the unknown α0 and F1. This naturally suggests an alternating Sinkhorn-
type scheme where each successive iterate improves the dual objective function so we have convergence (see section
3.2 of [JLO23]) which they refer to as the measure preserving martingale Sinkhorn (MPMS) algorithm. On page
6 with a few more lines they verify this formulation is equivalent to the fixed-point integral equation in [CL21] for
the cdf Gα0

of α0 given by Gα0
= Gµ0

◦ (R1 ∗ F ) = Gµ0
◦ (R1 ∗ (G−1

µ1
◦ (R1 ∗ Gα0

))), where Gν(.) denotes the cdf
of a probability measure ν, and they give a short formal proof of the contraction property for this equation which
was originally proved in Acciaio et al.[AMP25].

Recall that M in the preceding paragraph is also the solution to the martingale Benamou-Brenier problem

(mBB): infM0∼µ,MT∼ν,Mt=M0+
∫ t
0
σsdWs

E(
∫ T

0
(σt − 1)2)dt (T = 1 above), hence the sobriquet “stretched Brownian

motion”, or equivalently maximizes E(
∫ T

0
|σt|dt) and E(MTWT ) over the same set. Using the HJB/dualization ap-

proach we can obtain the dual representation for this problem in Eq 2 in [JLO23] using the Fenchel-Moreau theorem
(see also [Loep25]) which can be re-written in a (possibly) more intuitive/familiar form as supϕ(−

∫
ϕ(y)µT (dy) +∫

uϕ(x, 0)µ0(dx)) where uϕ satisfies the HJB equation ut + infσ( 1
2σ

2uxx + 1
2 (σ2 − 1)) = 0 (if a classical solution

exists) with u(x, T ) = ϕ, which is the same as the usual form for [GLW22],[GLOW22]-type problems with a single
terminal target law µT except now we integrate uϕ(x, 0) over µ0 because the two-maturity problem becomes a
1-maturity problem with a random starting point. [BST23] give an alternate more explicit formulation for the dual
here as infψ∈L1(ν),ψ convex(

∫
ψdν−

∫
(ψ∗ ∗ γ1)∗dµ) (ν = µT above) which we can prove just using basic properties of

derivatives of Legendre transforms, but the [JLO23] formula is more easily adapted to the more general mBB(H)

problem of minimizing E(
∫ T

0
H(σ2

t )dt) and more general diffusion processes.

Note if we solve an entropically regularized M.O.T. problem of the form infµ∈M(µ1,µ2)(H(µ|µ̄) + Eµ(c(X,Y ))
and similarly for (µ2, µ3), with µ1, µ2, µ3 in convex order, then concatenating the two conditional laws for Y |X
yields a (Markov) martingale measure consistent with all three target laws (see [Bour25], and related discussions in
[DHL19],[EKK25]), which can then be used to price path-dependent options (of course one can also use the Carr
Local Variance Gamma model to do this, cf. [Carr09],[CN17]).

[BG24] use an alternating Newton-Sinkhorn algorithm for the SPX-VIX calibration problem; specifically, for
each cycle they first run a multi-dimensional Newton scheme to solve for the non-martingale portfolio weights
(with (∆S(s1, v),∆L(s1, v) frozen so the Hessian is much smaller); once the Newton scheme has converged to
tolerance) they then use a Sinkhorn-type step where they jointly solve the two non-linear equations satisfied by
(∆S(s1, v),∆L(s1, v)) at each (s1, v) node, using the well known Levenberg-Marquardt algorithm. They then repeat
this cycle. Conversely, their implied Newton scheme just uses a single global Newton scheme for the non-martingale
weights but they re-solve for (∆S(s1, v),∆L(s1, v)) after each Newton iterate, which means the partial derivatives for
the Newton scheme with respect to a2 (i.e. the portfolio weights for the call options on ST2) are more cumbersome
to evaluate than before, and have to be computed using implicit differentiation (see also [Bour25] for the simpler
case when there are no VIX options, and subsection 2.6.1 below for a brief discussion on convergence for Newton’s
scheme applied to the problem in this article).

1.1 Outline of article

In this article, we adapt the Schrödinger bridge approach in [Guy20] to the problem of constructing a joint density
for two FX rates X and Y consistent with observed European option prices on all three cross-rates. The cross-smile
problem we consider in this article (as outlined in the abstract) falls under the general class of problems of the form
infµ∈C H(µ|µ̄) for a convex set C which is closed under the total variation metric (see Lemma 2.2), for which there
is a general existence/uniqueness result in Theorem 1.10 in [Nutz22].

Two of the Sinkhorn equations are of the usual fixed-point type but the final equation requires numerical root
finding as for the fourth and fifth equations in the first order optimality conditions for the SPX-VIX problem in
[Guy20]). This can also be solved as a pure optimal transport (OT) (linear programming) problem where we compute
the max or min price of a non-tradable option given tradable European options on all three cross-rates (as indeed
can Guyon’s SPX-VIX calibration problem5, see also [GMN17]. However, the Schrödinger bridge solution is more
realistic since the optimal coupling µ∗ has a joint density unlike OT problems where the support of µ∗ is typically
sparse. To cite a famous example, the left-curtain coupling in [BJ16] is the solution P∗ to supP∈M(µ,ν) EP(c(X,Y ))
if c satisfies the Spence-Mirlees condition cxyy > 0 and µ � Leb. In particular, Y = Tu(X) or Td(X) if X lies in
a certain range (i.e. a binomial model) and Y = X otherwise, so card(supp(P∗)) ≤ 2 (see also slide 14 and the
heat maps on slides 16 and 38 in [dM18]), with Tu(x) ≥ x non-decreasing and Td(x) ≤ x non-increasing. Explicit
derivations of the non-linear coupled ODEs for Tu(.) and Td(.) are given on page 12 in [HLT16], and the associated

5We thank Rowan Austin for demonstrating this in MOSEK using sparse flattened matrices to deal with the constraints.

2



hedge quantities on page 18 in [HLT16], and this problem can be solved numerically using MOSEK). Variants of
the left-curtain coupling are derived in the context of robust pricing/hedging for at-the-money forward straddle
options using a Lagrangian argument in [HK15] (n = 3), and [HN12] (n = 2); one can also compute e.g. minimal
price of an American put with finite exercise dates given two marginals, see [Norg25],[HN19],[HN25] for theoretical
results in this direction, and again such problems can often be solved numerically in MOSEK.

Returning to the current article, the usual Gibbs-type exponential ansatz for the joint density leads to a system
of three non-linear coupled integral equations for (u, v, w). We solve this system using a (quasi) Sinkhorn fixed
point scheme, and we characterize the rate of convergence for the three marginals (which is O( 1

n ) in terms of relative
entropy), assuming an admissible joint law exists with finite entropy.

We also discuss more realistic choices for the reference measure e.g. using the Gaussian copula, and one can
also adapt the Sinkhorn scheme for the forward-starter calibration problem in the usual setup with one asset and
two maturities which leads to a fourth integral equation to enforce the martingale condition E(∆(X)(Y − X))
for all ∆ ∈ Cb 6, which requires an additional root-find. In section 2.6, we focus on the finite-option case where
the standard Sinkhorn algorithm is not directly applicable, using the duality between minimal entropy equivalent
risk-neutral measures and the concave exponential utility maximization problem from chapter 3 in [FS04], and
explain how to compute sensitivities of the value function in terms of the optimal portfolio weights which serve
as the Lagrange multipliers. Again we can typically use Python (or better, Python with MOSEK or Clarabel) to
solve the primal and dual problems directly here (hence no need for Sinkhorn; numerical results for the latter are
given in Figure 3). We also construct a continuous-time martingale model consistent with the three marginals using
conditional sampling as in [BG24].

Note if we extend the main idea here to n currencies, we have 1
2n(n−1) cross-rates, so for the finite-option problem

with m-tradable options per currency we have 1
2n(n−1)m portfolio weights to solve for, plus the weights for the n−1

(non-redundant) forward contracts vs USD, and the integrals are now n−1-dimensional with respect to an n−1 di-
mensional pdf µ∗ (smile data for this is available at https://www.investing.com/currencies/eur-usd-options),
so for n = 4 this is the same as for the SPX-VIX problem in [Guy20].

Finally, in section 3 (under mild assumptions) we show that the upper (resp. lower) bound for options on X/Y
which pay (X −KY )+ in the original currency are attained by the lower (resp. upper) Fréchet-Hoeffding bound
(see also Hobson et al. [HLW05],[HLW05b] for a more involved analysis with basket options where the weights are
assumed to be non-negative or 1 unlike our example here).

2 Outline of problem

The BIS 2025 Triennial Survey (annex tables) shows total FX options turnover (Apr 2025, net-net) at $634,238m/day,
and for major currencies like the Euro, Dollar and Pound, European options are very actively traded on all three
cross-rates. A natural question to ask is: how do we construct a model so as to be consistent with observed Euro-
pean option prices at multiple strikes (at a single maturity) on all three cross-rates. This problem is attempted in
[Aus11] but the article does not check that the resulting joint density is non-negative.

Assuming our home currency is dollars, we let X denote the price of 1 Euro in dollars at time T in the future
(known as the EUR/USD rate), and Y denote the price of 1 pound in dollars at time T (the GBP/USD rate). A
European option on EUR/GBP (i.e. on the cross-rate Z = X/Y ) pays (Z−K)+ pounds at time T , or equivalently
Y (Z − K)+ dollars. If we assume interest rates are zero for simplicity (otherwise we work with forward rates
instead), then given a risk-neutral measure Q associated to the US economy, the initial price of such an option (in
pounds) is

1

Y0
EQ(Y (

X

Y
−K)+) = EQ̃((Z −K)+)

where Y0 = EQ(Y ), and we have re-written the expectation on the left side here using the GBP numéraire measure:

Q̃(A) := EQ(
Y

EQ(Y )
1A)

associated with using GBP as the home currency. From here, we will just use E(.) to denote expectations under Q.

From the Breeden-Litzenberger formula, we can extract the law of X and Y under Q from European call prices
at all strikes on X, and the law of X/Y under Q̃, and in practice this would typically be done using an SVI-type
parametrization to interpolate between tradable strikes with parameters chosen so as to preclude butterfly arbitrage
(see the many articles by Gatheral, Jacquier, Martini, Mingone et al. on this theme).

6We thank Youpeng Chen and Max Chellew for demonstrating this
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2.1 Formulation of the problem

We assume R+ = (0,∞) throughout. Now suppose we are given three target laws µX , µY and µZ on R+ and
(without loss of generality) we assume that∫

R+

xµX(dx) =

∫
R+

yµY (dy) =

∫
R+

zµZ(dz) = 1 (1)

i.e. the initial rates X0 = Y0 = 1 and hence Z0 = X0/Y0 = 1 as well. Let Π(µ, ν) denote the space of joint
probability measures on R2

+ with marginals µ and ν respectively. We wish to find a µ∗ ∈ Π(µX , µY ) such that if

X,Y have joint distribution µ∗, then X/Y ∼ µZ under the probability measure Q̃ defined above.

Remark 2.1 If such a µ∗ exists, it can then be used to price quanto options like e.g. Best-of options which pay
(X −K1)+/K1 ∨ (Y −K2)+/K2, or a quanto option which pays (XY −K)+ dollars (as opposed to GBP as above).

2.2 Technical results

Consider a measurable space (Ω,F), and let P(Ω) denote the collection of probability measures on (Ω,F). For
P ∈ P(Ω), H(Q|P) := EQ(log dQ

dP ) = EP(dQdP log dQ
dP ) denotes the entropy of Q with respect to P. Moreover, since

f(z) = z log z is convex, H(Q|P) = E(f(dQdP )) ≥ f(E(dQdP )) = 0. H(Q|P) is jointly l.s.c. and convex, see e.g. Lemma
1.3 in [Nutz22].

To specialize to our problem above, we now let E denote the set of probability measures µ on (R2
+,B(R2

+)) such
that

∫
u(x)µ(dx, dy) =

∫
udµX ,

∫
v(y)µ(dx, dy) =

∫
vdµY and

∫
yw(xy )µ(dx, dy) =

∫
wdµZ for all u, v, w ∈ Cb(R+).

Recall that the last condition is equivalent to∫
R2

+

(x−Ky)+µ(dx, dy) =

∫
R+

(z −K)+µZ(dz) for all K > 0 (2)

which is the formulation that we use in Appendix A. We now make the following standing assumption:

Assumption 2.1 E is non-empty, and contains an element µ with H(µ|µ̄) <∞.

Then E is convex, and the following property is readily verified:

Lemma 2.2 E is closed in the weak topology, (and since total variation convergence implies weak convergence) E
is also closed under the total variation metric.

Proof. See Appendix A.

Then by Lemma 1.10 in [Nutz22] (or Theorem 2.1 in [Csi75]), H(µ|µ̄) attains a unique minimum µ∗ on E , and
(from Theorem 2.1 in [Csi75]),

µ∗ = eg µ̄ (3)

where g lies in the closed subspace of L1(µ∗) spanned by the functions of the form u(x), v(y) and yw(xy ).

Unfortunately, this does not automatically imply that g is of the form u(x) + v(y) + yw(xy ). For this reason, we

will not solve the problem infµ∈E H(µ|µ̄) directly or use the result in (3) (which we don’t require anyway)7, but
rather we use

µ∗(x, y) = eu
∗(x)+v∗(y)+yw∗( xy )µ̄(x, y) (4)

as an ansatz for an admissible µ (i.e. in E ), and (assuming E is non-empty) we show that the marginals for the
associated Sinkhorn scheme (defined below) converge under appropriate conditions on the target laws, which is all
we need for our calibration problem. This circumvents the need for dualization arguments as in [Guy20], but we do
discuss duality for the finite-option case below where it becomes more practically relevant.

7Solving infµ∈E H(µ|µ̄) also lead to issues with having to prove attainment for the dual problem to justify the exponential ansatz
which (even for the much simpler problem considered in Theorem 2.1 in [Nutz22]) requires pages of intermediate lemmas to prove, see
section 2.3 and the discussion below Eq 2.8 there, and the recent preprint [NW25].
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2.3 Integral equations for u, v, w

From here on we assume the following:

Assumption 2.3 µX , µY and µZ have densities.

Let µ̄ denote a reference probability measure, typically chosen to be the product measure of µX and µY , so µ̄ already
satisfies 2 of the 3 marginal constraints. Then using the ansatz in (4) the marginal constraints can be written

µX(x) = eu(x)

∫ ∞
0

ev(y)+yw( xy )µ̄(x, y)dy

µY (y) = ev(y)

∫ ∞
0

eu(x)+yw( xy )µ̄(x, y)dx

µZ(K) =

∫ ∞
0

∫ ∞
0

yδ(
x

y
−K)eu(x)+v(y)+yw( xy )µ̄(x, y)dydx (5)

=

∫ ∞
0

∫ ∞
0

x

z
δK(dz)eu(x)+v( xz )+ x

zw(z) x

z2
µ̄(x,

x

z
)dzdx

=

∫ ∞
0

x

K
eu(x)+v( xK )+ x

Kw(K) x

K2
µ̄(x,

x

K
)dx

where we have made the transformation z = x/y (i.e. y = x/z), so dy = − x
z2 dz in the inner integral. We can

formally obtain the same three equations using a variational argument as on pg 8 in [Guy20] (see also Remark 3.4
in [Nutz22]).

If the integrals in the expressions for µX(x) and µY (y) are finite and non-zero, the first two equations can be
re-arranged as

u(x) = logµX(x) − log

∫ ∞
0

ev(y)+yw( xy )µ̄(x, y)dy

v(y) = logµY (y) − log

∫ ∞
0

eu(x)+yw( xy )µ̄(x, y)dx

and from here on we make the usual choice that µ̄(x, y) = µX(x)µY (y), so these simplify further to

u(x) = − log

∫ ∞
0

ev(y)+yw( xy )µY (y)dy , v(y) = − log

∫ ∞
0

eu(x)+yw( xy )µX(x)dx

and setting K = z, we see that

H̄(z;u, v, w) =

∫ ∞
0

eu(x)+v( xz )+ x
zw
x2

z3
µX(x)µY (

x

z
)dx − µZ(z) = 0 (6)

where (with mild abuse of notation) w is a scalar here unlike above.

2.4 The Sinkhorn scheme

The Sinkhorn-type fixed point iterative scheme to solve these coupled equations is then given by

un+1(x) := − log

∫ ∞
0

evn(y)+ywn( xy )µY (y)dy (7)

vn+1(y) := − log

∫ ∞
0

eun+1(x)+ywn( xy )µX(x)dx (8)

0 = H̄(z;un+1, vn+1, wn+1) (9)

with u0 ≡ v0 ≡ w0 ≡ 0. It is also instructive to re-write the first equation as

µX(x) = eun+1(x)

∫ ∞
0

evn(y)+ywn( xy )µX(x)µY (y)dy

= eun+1(x)−un(x)

∫ ∞
0

eun(x)+vn(y)+ywn( xy )µX(x)µY (y)dy

= eun+1(x)−un(x)µXn,n,n(x)

and (after doing the same for the Y equation) we see that

un+1(x) = un(x) + log
µX(x)

µXn,n,n(x)
, vn+1(y) = vn(y) + log

µY (y)

µYn+1,n,n(y)
.
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Note we can also re-write Eq (6) as∫ ∞
0

eu(zy)+v(y)+ywy2µX(yz)µY (y)dy − µZ(z) = 0

by letting x = yz, so dx = zdy. Then if w∗(z) = inf{w :
∫∞

0
eu(zy)+v(y)+ywy2µX(yz)µY (y)dy = +∞}, then (from

the monotone convergence theorem) we know that

lim
w↗w∗(z)

∫ ∞
0

eu(zy)+v(y)+ywy2µX(yz)µY (y)dy =

∫ ∞
0

eu(zy)+v(y)+yw∗(z)y2µX(yz)µY (y)dy . (10)

The right-hand side may or may not be infinite, but we clearly need it to be ≥ µZ(z) to be able to find a root of
H̄(z;u, v, w). We now make an additional mild assumption to preclude any root-finding problems.

Assumption 2.4 0 < Y ≤ Ȳ <∞, µX , µZ > 0 on R+ and µY > 0 on (0, Ȳ ].

Remark 2.2 Note the first condition is not especially unrealistic since we are working with major FX rates not
e.g. equities or crypto with fat tails, and the pound has been above $1.054 since 1985 and below $2.86 since 1957.

Lemma 2.5 Under Assumption 2.4, un ∈ L1(µX), vn ∈ L1(µY ) and wn ∈ L1(µZ) for all n ∈ N (cf. Lemma 6.4 in
[Nutz22]).

Proof. We proceed by induction: u0, v0, w0 are zero by assumption, and we take the stated claim as our inductive
hypothesis. We can re-write the first two steps of the next iterate of the Sinkhorn scheme in the form

dµn+1,n,n

dµn,n,n
(x, y) =

dµX
dµXn,n,n

(x) ,
dµn+1,n+1,n

dµn+1,n,n
(x, y) =

dµY
dµYn+1,n,n

(y) (11)

where a superscript like µX refers to the X-marginal of µ (and similarly for Y , see also Algorithm 6.2 in [Nutz22]).
We first remark that if µn,n,n is a probability measure, then µn+1,n,n and µn+1,n+1,n are too (and likewise
µn+1,n+1,n+1), because each update enforces a marginal that integrates to 1.

Moreover, any probability density of the form µ(x, y) = eu(x)+v(y)+yw(x/y)µX(x)µY (y) with u, v, w finite Lebesgue
a.e. is equivalent to µ̄ = µX × µY under Assumption 2.4; in particular, the X-marginal of µ is χ(x)µX(x) where

χ(x) = eu(x)
∫ Ȳ

0
ev(y)+yw(x/y)µY (y)dy, and hence equivalent to µX , because χ(x) is finite for (Lebesgue) almost all

x (or else µX would not be a marginal, by Tonelli’s theorem), and χ > 0 Lebesgue-a.e.
Similarly, the Y -marginal of µ is

∫∞
0
eu(x)+yw(x/y)µX(x)dx · ev(y)µY (y), and this is equivalent to µY for the

same reason. Hence (under the inductive hypothesis), the right-hand sides of both equations in (11) are finite
Lebesgue-a.e., and µn+1,n,n and µn+1,n+1,n are both equivalent to µ̄.

Moreover

H(µn+1,n,n|µn,n,n) =

∫
log

dµn+1,n,n

dµn,n,n
µn+1,n,n(x, y)dxdy =

∫ ∫
(un+1(x)− un(x))µn+1,n,n(x, y)dxdy

=

∫
(un+1 − un)dµX

=:

∫
(un+1 − un)+dµX −

∫
(un+1 − un)−dµX ∈ [0,∞]

since H(µn+1,n,n|µn,n,n) ≥ 0 and µn+1,n,n has the correct marginal for X by construction. Since the integral is non-
negative, we are not in an∞−∞ situation, so (un+1−un)− ∈ L1(µX). Then using that u−n+1 ≤ u−n +(un+1−un)−,

and un ∈ L1(µX) by the inductive hypothesis, we see that u−n+1 ∈ L1(µX).

From Assumption 2.1, there exists a µ∗ ∈ E with H(µ∗|µ̄) < ∞, and from the discussion above we know that
µn+1,n,n � µ̄, hence by Lemma 1.4 (a) in [Nutz22] with Q = µ∗ ∈ E , Q′ = µn+1,n,n and R = µ̄, we see that

(log
dµn+1,n,n

dµ̄
)+ = (un+1 + vn + ywn)+ ∈ L1(µ∗) .

Using the general identity a+ ≤ (a + b)+ + b− with a = un+1 and b = vn + ywn, we know that b− ∈ L1(µ∗) from
the induction hypothesis and µ∗ has the correct Y and Z-marginals, so we conclude that u+

n+1 ∈ L1(µ∗) and hence

u+
n+1 ∈ L1(µX). Similarly

H(µn+1,n+1,n|µn+1,n,n) =

∫
(vn+1 − vn)dµn+1,n+1,n =

∫
(vn+1 − vn)dµY

for all n ≥ 0, and we use an analogous argument to verify that vn+1 ∈ L1(µY ).
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Using that

Eµn+1,n+1,n(Y δ(Z − z)eY (w−wn(z))) = Eµ̃n+1,n+1,n(δ(Z − z)eY (w−wn(z)))

= Eµ̃n+1,n+1,n(eY (w−wn(z))|Z = z) µ̃Zn+1,n+1,n(z)

(where
dµ̃n+1,n+1,n

dµn+1,n+1,n
= Y and µ̃Zn+1,n+1,n(z) is the Z-density of µ̃n+1,n+1,n, and µn+1,n+1,n has the correct Y -marginal

so µ̃n+1,n+1,n is a probability measure) the final Sinkhorn step can be re-written as finding the solution w = w(z)
to

F (z, w) := Eµ̃n+1,n+1,n(eY (w−wn(z))|Z = z) − µZ(z)

µ̃Zn+1,n+1,n(z)
= 0 (12)

8 for µZ-a.e. z. wn(z) is finite µZ a.e. because wn ∈ L1(µZ) by assumption, and (since 0 < Y ≤ Ȳ ) the conditional

expectation in (12) is finite for w ∈ R, and (from the monotone convergence theorem) F (z, w) tends to +∞ as

w →∞, and (from the bounded convergence theorem) tends to − µZ(z)

µ̃Zn+1,n+1,n(z)
as w ↘ −∞, and is continuous in w

(from the dominated convergence theorem). Hence there exists a unique finite w = wn+1(z) satisfying (12), so the
Q̃-marginal of µn+1,n+1,n+1 is µZ as required. Moreover, F is Borel in z, continuous and strictly increasing in w
µZ a.e., hence (by the measurable implicit function theorem, Carathéodory’s conditions), the unique root wn+1(z)
admits a Borel version.

Then µn+1,n+1,n+1 is a probability measure equivalent to µ̄, and

H(µn+1,n+1,n+1|µn+1,n+1,n) =

∫
y(wn+1 − wn)dµn+1,n+1,n+1 =

∫
(wn+1 − wn)dµZ

so using the same argument as for un+1 and vn+1, we can check that wn+1 ∈ L1(µZ).

In the next section we prove convergence of the marginals for the scheme in the total variation metric. The
Sinkhorn scheme typically converges very quickly in practice, and note the third equation here requires numerical
root-finding as for the SPX-VIX calibration problem discussed in [Guy20], but we have one less dimension here
since we only have to compute w(z) for a range of values for the one argument z not a two-variable function of the
form ∆(s1, v) as in [Guy20].

2.5 Order of convergence for the Sinkhorn scheme

Set µi,j,k(x, y) = eui(x)+vj(y)+ywk(x/y)µ̄(x, y), and let µXi,j,k(x) (resp. µYi,j,k(y)) denote the first (resp. second)

marginal of µi,j,k, and let µ̃Zi,i,i denote the Z-marginal of µ̃i,i,i defined via
dµ̃i,i,i
dµi,i,i

= Y .

Proposition 2.6 Under Assumptions 2.1, 2.3 and 2.4, the marginals for the Sinkhorn scheme converge; specif-
ically we have that ‖µXn,n,n − µX‖TV → 0 and ‖µYn,n,n − µY ‖TV → 0 as n → ∞ (where ‖.‖TV denotes the total

variation distance, see [Nutz22]) and µ̃Zn,n,n = µZ for all n ≥ 1. Moreover there exists a constant A such that

‖( 1
n

∑n−1
i=0 µi,i,i)

X − µX‖TV ≤ A√
n

and ‖( 1
n

∑n−1
i=0 µi,i,i)

Y − µY ‖TV ≤ A√
n

i.e. the marginals of the average of the

Sinkhorn iterates have O( 1√
n

) convergence.

Proof. Following Lemma 6.4 in [Nutz22], we see that

H(µn+1,n,n|µn,n,n) =

∫
log

dµn+1,n,n

dµn,n,n
µn+1,n,n(x, y)dxdy =

∫ ∫
(un+1(x)− un(x))µn+1,n,n(x, y)dxdy

=

∫
(un+1 − un)dµX (13)

since µn+1,n,n has the correct marginal for X by construction (see also Eq 6.5 in [Nutz22]), and similarly

H(µn+1,n+1,n|µn+1,n,n) =

∫
(vn+1 − vn)dµn+1,n+1,n =

∫
(vn+1 − vn)dµY

H(µn+1,n+1,n+1|µn+1,n+1,n) =

∫
y(wn+1 − wn)dµn+1,n+1,n+1 =

∫
(wn+1 − wn)dµZ (14)

for all n ≥ 0. From Assumption 2.1, there exist a µ∗ ∈ E with H(µ∗|µ̄) <∞, so (by Lemma 1.4b) in [Nutz22]) we
see that

H(µ∗|µ̄)−H(µ∗|µn,n,n) = Eµ∗(log
dµn,n,n
dµ̄

) (15)

8Note that µ̃Zn+1,n+1,n(z) > 0 for µZ -a.e. z by Assumption 2.4 and the equivalence of µn+1,n+1,n and µ̄, so the denominator is
well-defined.
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which (from the definition of the scheme) we can re-write as

Eµ∗(log
dµn,n,n
dµ̄

) = Eµ∗(un(X) + vn(Y ) + Y wn(X/Y )) = EµX (un(X)) + EµY (vn(Y )) + EµZ (wn(Z)). (16)

where the integrability from Lemma 2.5 is used to obtain the final equality, and we have used that µ∗ ∈ E has
marginals µX , µY , µZ in the sense of the defining constraints). Re-writing the right-hand side here as a telescoping
sum using the three equations at the beginning of the proof, we see that

H(µ∗|µn,n,n) = H(µ∗|µ̄) −
n−1∑
i=0

(H(µi+1,i,i|µi,i,i) +H(µi+1,i+1,i|µi+1,i,i) +H(µi+1,i+1,i+1|µi+1,i+1,i)) (17)

so 0 ≤ H(µ∗|µn,n,n) ≤ H(µ∗|µ̄), and we see that H(µ∗|µn,n,n) is non-increasing9 (recall H(µ∗|µ̄) is finite by
assumption). The sum on the right in (17) is bounded by H(µ∗|µ̄), so the summand tends to zero. Then from the
Data Processing Inequality (Example 1.7 in [Nutz22]), for i ≥ 1, the third term in the summand in (17) dominates
H(µYi+1,i+1,i+1|µY ) and the first term dominates H(µX |µXi,i,i) (note the ordering is now the other way round, but
this won’t matter when we apply Pinsker’s inequality below) so these two quantities also tend to zero as i→∞ (so
clearly H(µYi,i,i|µY )→ 0 as well), and µ̃Zi,i,i = µZ by construction for all i ≥ 1. Then from Pinsker’s inequality (see
Lemma 1.2 in [Nutz22] with the 2 typo corrected),

‖µXi,i,i − µX‖2TV ≤ 1

2
H(µX |µXi,i,i) → 0

‖µYi,i,i − µY ‖2TV ≤ 1

2
H(µYi,i,i|µY ) → 0

so we have convergence for the three marginals as claimed. Finally, to get the order of convergence, from the joint
convexity of H(., .) and the Data processing inequality,

H(µX |(
1

n

n−1∑
i=0

µi,i,i)
X) = H(µX |

1

n

n−1∑
i=0

µXi,i,i) ≤ 1

n

n−1∑
i=0

H(µX |µXi,i,i) ≤ 1

n

n−1∑
i=0

H(µi+1,i,i|µi,i,i) ≤ H(µ∗|µ̄)

n

H((
1

n

n∑
i=1

µi,i,i)
Y |µY ) = H(

1

n

n∑
i=1

µYi,i,i|µY ) ≤ 1

n

n∑
i=1

H(µYi,i,i|µY ) ≤ 1

n

n∑
i=1

H(µi,i,i|µi,i,i−1) ≤ H(µ∗|µ̄)

n
.

Hence (from Pinsker’s inequality) ‖( 1
n

∑n−1
i=0 µi,i,i)

X −µX‖TV and ‖( 1
n

∑n
i=1 µi,i,i)

Y −µY ‖TV are O( 1√
n

) and again

we know µ̃Zi+1,i+1,i+1 = µZ by construction, and (from the definition of the total variation metric the contribution

from 1
nµ0,0,0 is irrelevant in the limit).

Remark 2.3 See also Section 6.2 in [Nutz22] and [GN22] for further discussion on the rate of convergence for
Sinkhorn schemes.

2.6 The finite-option case

In this section, we mimic the setup in sections 1.1 (and section 3.1) for a one-period market model in [FS04] (see
also Example 1.18 in [Nutz22]).

Assume we now only have d+ 1 tradable assets with (dollar) prices Si at time 1 of the form gi(X,Y ) for some
measurable non-negative functions gi with S0 = 1 (i.e. cash), and S1 = X and S2 = Y (i.e. forwards on X and Y
respectively), where X and Y are defined on the probability space (Ω,F ,P) = (R2

+,B(R2
+), µ̄). As before, X and Y

represent the EUR/USD and GBP/USD exchange rates at time 1, and we assume these d+ 1 assets have (dollar)
market prices πi at time 0. In practice we are typically interested in the case when the assets for i > 2 comprise
European calls (resp. puts) on X and Y and cross-rate options which pay (X − KY )+ (resp. (KY − X)+) in
dollars.

We set Ỹ i = Si − πi for i = 1, . . . , d, and assume interest rates are zero W.L.O.G., and assume the prices πi

are arbitrage-free (see Eq 3.5 in [FS04] for definition), and the payoffs Si are non-redundant (see Definition 3.3 in
[FS04]), so in particular we do not include a forward on the cross-rate Z = X/Y since this is worth Y · XY = X = S1

dollars at time 1.

Then under the (somewhat stringent) moment condition Eµ̄(eλ·Ỹ ) <∞ for all λ ∈ Rd, from Corollary 3.27 and
Thm 3.30 in [FS04] (with m = 0), there exists a unique equivalent probability measure µ∗ ∼ µ̄ and a λ∗ such that

H(µ∗|µ̄) = inf
µ∼µ̄ :Eµ(Ỹ i)=0,∀i

H(µ|µ̄) = sup
λ∈Rd

− logEµ̄(eλ·Ỹ ) = − logEµ̄(eλ
∗·Ỹ ) (18)

9From (15) and (16) we also see that Eµ∗ (log
dµn,n,n
dµ̄

) = EµX (un(X)) + EµY (vn(Y )) + EµZ (wn(Z)) ≤ H(µ∗|µ̄) <∞ i.e. we have a

uniform bound.
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with dµ∗

dµ̄ = eλ
∗·Ỹ

Eµ̄(eλ∗·Ỹ )
, i.e. we minimize the log mgf of Ỹ under µ̄ which is strictly convex and smooth (see e.g. Lemma

3.20 and Theorem 3.5 in [FS04]), which is tantamount to maximizing exponential utility using all available assets

under µ̄. The constraints Eµ(Ỹ ) = 0 correspond to the first-order optimality conditions (FOC): ∂
∂λE

µ̄(eλ·Ỹ )|λ=λ∗ =

Eµ̄(Ỹ eλ
∗·Ỹ ) = 0 (see Proposition 3.9 in [FS04]).

This is essentially the FTAP (in the direction no-arbitrage ⇒ existence of risk-neutral measure) for a one-
period market (see Remark 3.13 in [FS04]), and (18) is the finite-dimensional analog of the concave maximization
problem in Eq 5.5 in [Guy20] (appropriately adapted for our problem). Figure 3 displays numerical results for this
maximization scheme (using CVXPY with MOSEK) applied to the FX option (and forward) prices in Table 1.

Remark 2.4 From the envelope theorem, the Lagrange multipliers λ∗i yield the sensitivities of the certainty equiv-
alent:

− ∂

∂πi
logEµ̄(eλ

∗(π)·(S−π)) = λ∗i

(recall λ∗ also depends on π, but the contribution from ∂λ∗

∂πi doesn’t show up in the final answer because it vanishes
due to the FOC).

Remark 2.5 Note we can either choose µ̄ to be the real world market model (i.e. the P-measure), in which case the
dual (maximization) problem here is the classical problem of maximizing exp utility from the available assets, or (if
e.g. we cannot easily estimate P from historical data), we can just choose µ̄ as a fictitious reference measure which
we can specify to be consistent with the tradable European options prices on X and Y to give a warm starting
point for the concave maximization scheme (see also Remark 13 in [Guy24]).

2.6.1 Newton’s method

If we let V (λ) = logEµ̄(eλ·Ỹ ), then the Hessian of V is

Hij := ∂2
λi,λjV = CovPλ(Ỹ i, Ỹ j) (19)

(cf. Lemma 3.20 and Definition 3.16 in [FS04] for the definition of Pλ), andH is positive-definite because a>CovP(Ỹ )a =
VarP(a · Ỹ ) ≥ 0, with equality if and only if a = 0 (from the non-redundancy condition above), and Pλ is equivalent
to P so this property carries over to Pλ.

Newton’s method for the dual exponential utility maximization problem in the final term of (18) is λn+1 = g(λn),
where g(λ) := λ−H(λ)−1∇V (λ). Hence (from the Banach fixed point theorem) a sufficient condition for convergence
is that the initial guess λ0 lies in the neighborhood of λ∗ for which g is a contraction, i.e. where the Jacobian

(∇g(λ))im :=

d∑
k,`=1

H−1
ik ∂3

k`mV (λ) (H−1∇V (λ))`

is strictly less than 1 in the operator 2 norm ‖A‖2 := supx∈Rd:‖x‖2=1 ‖Ax‖2 (recall that ∇g = 0 at λ∗, and V is

C∞ (Lemma 3.20 in [FS04]) and ∇3V is a rank-3 (d× d× d) tensor here). Convergence for the Newton scheme is
quadratic in this neighborhood (although the size of this neighborhood is not explicit without further bounds (e.g.
a Lipschitz constant for H near λ∗), but in principle we have to numerically compute a double integral for each
component of the lower triangular part of the Hessian here (or triple integrals for the scheme in [BG24]). 10

2.7 Using a copula for µ̄

A more flexible choice for µ̄ is to use e.g. use the Gaussian copula, and fit the correlation parameter ρ to e.g.
historical data or use the Margrabe formula: σ2

Z = σ2
X + σ2

Y − 2ρσXσY (used for pricing EUR/GBP options under
a bivariate Black-Scholes model) to back out ρ using implied volatilities.

To compute µ̄ for the Gaussian copula, we set X = F−1
X (Φ(Z1)) and Y = F−1

Y (Φ(Z2)) where Z1, Z2 ∼ N(0, 1)
with E(Z1Z2) = ρ, then X ∼ µX and Y ∼ µY as required, and

P(X ≤ x, Y ≤ y) = P(F−1
X (Φ(Z1)) ≤ x, F−1

Y (Φ(Z2)) ≤ y) = P(Z1 ≤ Φ−1(FX(x)), Z2 ≤ Φ−1(FY (y))) .

µ̄ is then given by

µ̄(x, y) =
∂2

∂x∂y
P(X ≤ x, Y ≤ y) = F̄ (x)Ḡ(y)f(Φ−1(FX(x)),Φ−1(FY (y)))

where f is the joint density of Z1 and Z2, and F̄ (x) = d
dx (Φ−1(FX(x))) and Ḡ(y) = d

dy (Φ−1(FY (y))) (see numerical

results in Figure 3).

10in practice this could be done as a single aggregated computation for the whole Hessian, and other speed-ups can also be applied
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Remark 2.6 Using the Margrabe formula with all combinations of the 5×5×5 (mid) implied volatilities in the table
below for the EUR-USD-GBP triangle leads to a range for the implied correlation for EUR/USD and GBP/USD
of [0.7445, 0.8156].

EUR/USD 1.0567 1.0680 1.0798 1.0950 1.1025

Implied vol 5.69/6.315% 5.621/5.966% 5.54/5.815% 5.509/5.854% 5.45/6.075%

a, b, σ, ρ,m -0.0005100 0.009510 0.08579 0.30719 0.03433

GBP/USD 1.2331 1.2480 1.2632 1.2718 1.2919

Implied vol 6.148/7.239% 6.125/6.727% 5.985/6.465% 5.873/6.475% 5.681/6.772%

a, b, σ, ρ,m 0.0002773 0.002254 0.01867 -0.3272 0.003880

EUR/GBP 0.84261 0.84852 0.85478 0.86142 0.8681

Implied vol 3.414/4.584% 3.59/4.232% 3.66/4.17% 3.735/4.373% 3.681/4.841%

a, b, σ, ρ,m 0.0001047 0.001959 0.01139 0.2032 -0.001484

Table 1: Table of (bid-ask) implied volatilities with 1-month maturity (with strikes going horizontally in the 1st,
3rd and 5th rows) on 11th Feb 2024, and SVI parameters fitted to the mid-implied vols. The forward prices here
are 1.0796 for EUR/USD, 1.2630 for GBP/USD and .85483 for EUR/GBP (data obtained from Bloomberg), and
these SVI parameters are used for the Sinkhorn scheme.

2.8 A continuous martingale consistent with (µX , µY , µZ)

We can construct a Markov functional-type continuous martingale model (Xt, Yt)t≥0 consistent with the three
marginals (µX , µY , µZ) using conditional sampling as in [BG24]. Specifically, we let

Xt = E(F−1
X (Φ(

WT√
T

))|FWt ) = E(f(WT )|Wt)

Yt = E(F−1
Y |X(Φ(

BT√
T

), XT )|FW,Bt ) = E(g(BT ,WT )|Wt, Bt)

for t ∈ [0, T ] (setting X = XT and Y = YT ), where W,B are two independent Brownian motions, Φ is the standard
Normal cdf, FX is the distribution function of µX , and FY |X(., x) is the conditional distribution function of Y given
X (which comes from the solution µ∗(x, y) to the Sinkhorn equations). f and g(., .) are shorthand for the functions
which appear inside the expectations in the middle eqs in each line but with the second function re-expressed in
terms of WT . To see that Y has the correct conditional law given X at time zero, we note that

YT = F−1
Y |X(Φ(

BT√
T

), X) = F−1
Y |X(V,X)

and B and W are independent, so the U [0, 1] random variables U = Φ(WT√
T

) and V = Φ(BT√
T

) are independent, so

we are sampling Y |X correctly.

Note this approach is somewhat asymmetric in so far as the Y process is more complicated that the X process;
a more symmetric approach would be to use the true Bass martingale where (X,Y ) = (Vx(WT , BT ), Vy(WT , BT )) for
some convex function V characterized in terms of the standard stretched Brownian motions s2BM (see [BBHK20],[BST23],[AMP25]),
see e.g. Theorem 1.4 in [BST23].

3 Extremal prices for the cross-rate options given full marginals µX
and µY and Kantorovich duality

In this section we compute robust price bounds (and the corresponding sub/super hedge) for cross-rate options
which pay (X −KY )+ dollars, i.e. we solve the (non-entropic) optimal transport problem.

To this end, we first note the triangle-type inequality:

(x− y)+ ≤ (x− x1)+ + (x1 − y)+ (20)

for all x, y, x1 ∈ R (we just have to check all cases to verify this identity). Now let y = p(x) := F−1
µY (1 − FµX (x))

where Fµ(x) := µ([0, x]) so Y = p(X) ∼ µY if X ∼ µX i.e. the Fréchet-Hoeffding countermonotone coupling, and
note that p is strictly decreasing if we assume µX and µY have strictly positive densities. We further assume there
is a unique root x∗ of p(x) = x, with p(x) > x∗ for x < x∗ and vice versa (see first plot in Figure 4 below). Then
setting x1 = x∗ and y = p(x) and assuming x > x∗, (20) becomes

x− p(x) ≤ x− x∗ + x∗ − p(x)

(since p(x) < x) i.e. an equality. Conversely if y = p(x) and x < x∗, p(x) > x∗ > x so both sides of (20) are
zero. Hence (x − x∗)+ + (x∗ − y)+ (i.e. a call on X plus a put on Y , both with strike x∗) is a superhedge for
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Figure 1: Here we have plotted the maximizing u, v and w respectively after 40 iterations of the Sinkhorn
algorithm, using [.9, 1.1]2 as the domain for numerical integration for X,Y .

Figure 2: Here we have plotted the Sinkhorn smiles (blue) as a function of moneyness K/F0 associated with the u,
v and w in the plot above verses the original (mid)-market smiles (grey crosses) from Table 1 and the SVI
interpolated smiles (grey line, which can barely be seen as it is very close to the blue curve) for EUR/USD,
GBP/USD and EUR/GBP on 11th Feb 2024. Five options were used for each cross-rate (At-the-money, and .10,
.25, .75, and .90 Delta calls, as is customary in FX options markets), using the standard SVI parametrization to
interpolate between them and 400 point Gaussian quadrature for the single and double integrals which appear in
the Sinkhorn equations, and the bisection method for the root-finding.

Figure 3: Here we have plotted the EUR/USD, GBP/USD and EUR/GBP smiles below) by solving the
finite-dimensional concave maximization problem on the right-hand side of (18) for the same option data in Table
1, using a Gaussian copula for µ̄ with correlation ρ = .6.
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Figure 4: On the left we see the optimal transport map y = p(x) (in blue) from Section 3 using the
countermonotone Frechet-Hoeffding bound versus the y = x line (dashed). In the 2nd plot we see the p(x) map for
the minimal price for EUR/GBP options which comes from the comonotone Frechet-Hoeffding bound (and we see
there are three points of equality which is a problem case), and the final plot shows the same p(x) function for
EUR/USD options (given EUR/JPY and USD/JPY smiles on 3rd Mar 2024) which only has 1 point of equality
(non-problem case) as assumed in the proof in subsection 3.

c(x, y) = (x − y)+, and equality is attained by the coupling Y = p(X), so this coupling is optimal for the max
problem, i.e. ∫ 1

0

(F−1
µX (u)− F−1

µY (1− u))+du = sup
µ∈Π(µX ,µY )

Eµ((X − Y )+)

(see also [HLW05],[HLW05b] who look at this problem in the context of basket options). For the general case when
c(x, y) = (x−Ky)+, we just regard KY as the new Y variable, then x∗ is now the root of p(x) = Ky in the proof
above, which is otherwise unchanged except now x∗ depends on K.

For the lower bound, we first note that

(x− y)+ ≥ −(x1 − x)+ + (x1 − y)+ (21)

for all x, y, x1 ∈ R. Now let y = p(x) = F−1
µY (FµX (x)) so Y = p(X) ∼ µY if X ∼ µX i.e. the Fréchet-Hoeffding

comonotone bound coupling, and note that p is strictly increasing if we assume µX and µY have strictly positive
densities. We again assume there is a unique root x∗ of p(x) = x, but now with p(x) > x for x > x∗ and vice versa
(see 3rd plot in Figure 4). Then again setting x1 = x∗ and y = p(x) and assuming x ≤ x∗, (21) becomes

x− p(x) ≥ −(x∗ − x) + (x∗ − p(x)) = x− p(x)

so we have equality. Conversely, if x > x∗, both sides of (21) vanish. Hence (repeating the same arguments as
above), the coupling with Y = p(X) is optimal for the min problem, i.e.∫ 1

0

(F−1
µX (u)− F−1

µY (u))+du = inf
µ∈Π(µX ,µY )

Eµ((X − Y )+)

and again we can extend this argument to the general case when c(x, y) = (x −Ky)+. Note our assumption that
p(x) = x has a unique root fails for our EUR-USD-GBP triangle example (see second plot in Figure 4) where
p(x) = x at three distinct x-values (see also Corollary 1.2 in [BJ16], although their result requires strict convexity
condition on c(x, y) = h(y − x)).

Remark 3.1 For a single cross-rate option paying (x −Ky)+ with market price P , we can construct a “model”
consistent with P and the given marginals for X and Y if and only if P lies within the upper and lower price bounds
computed above, in which case the model can just be chosen as a weighted coin toss between the two extremal
models with the weight chosen to match P . It is an interesting open problem as to whether we can construct a
consistent model if we have prices for two (or n) such cross-rate options when the market prices for each these
options lie between their respective upper and lower price bounds 11
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[FS04] Föllmer, H. and A.Schied, “Stochastic Finance: An Introduction in Discrete Time”, W. de Gruyter, Berlin,
2nd edition, 2004.

[GN22] Ghosal, P. and M.Nutz, “On the Convergence Rate of Sinkhorn’s Algorithm”, preprint
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A Proof of Lemma 2.2

Let µn ∈ E with µn
w→µ. For any u ∈ Cb(R+), from weak convergence

∫
udµn →

∫
udµ, but we also know that∫

udµn =
∫
u(x)µX(dx) so

∫
udµ =

∫
u(x)µX(dx) as required, so µ has the correct X-marginal (and we use a

similar argument for the Y -marginal). For the final part of the proof, we use the formulation of E in (2): let
fK(x, y) := (x−Ky)+ and fK,m := (x−Ky)+ ∧m. Then

0 ≤ fK − fK,m = ((x−Ky)+ −m)+ ≤ x1x>m.

Fix ε > 0. Since
∫
x dµX = 1 <∞, we can choose m sufficiently large so that

∫
x1{x>m}dµX ≤ ε , and hence

sup
n

∫
(fK − fK,m) dµn ≤ ε,

∫
(fK − fK,m) dµ ≤

∫
x1{x>m} dµX ≤ ε

since µX = µXn = µX (from the first part of the proof). Then from the triangle inequality

|
∫
fKdµn −

∫
fKdµ| ≤

∫
(fK − fK,m)dµn + |

∫
fK,mdµn −

∫
fK,m dµ| +

∫
(fK − fK,m)dµ .

Using weak convergence for the middle term, we see that

lim sup
n→∞

|
∫
fK dµn −

∫
fK dµ| ≤ 2ε .

Then since ε > 0 is arbitrary, the claim follows.
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