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Abstract

We show weak convergence of the marginals for a re-scaled rough Heston model to a Normal Inverse Gaussian
(NIG) Lévy process. This shows we can obtain such a limit without having to impose that the true Hurst exponent
H for the model is 1

2
as in [AC24],1 or that H ↘ − 1

2
as in [AAR25], so the result potentially has increased

financial relevance. We later extend to the case when V has jumps, where we show weak convergence of the
finite-dimensional distributions of the integrated variance to a deterministic time-change of the first passage time
process to lower barriers for a more general class of spectrally positive Lévy processes.2
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1 Introduction

The Rough Heston stochastic volatility model was introduced in [JR16], and (using C−tightness arguments) they
show that the model arises naturally as a weak large-time limit of a high-frequency market microstructure model
driven by two nearly unstable Hawkes processes. [ALP19], [ER19] and [GK19] show that the characteristic function
of the log stock price for Rough Heston-type models can be expressed in terms of the solution to a non-linear Volterra
integral equation (VIE) (see also [EFR18], [ER18] and [BLP24], [BPS24], [CT20] for extensions to jumps in V ),
which allows for accurate option pricing for H � 1 (and even H = 0) using an Adams scheme to solve the VIE
numerically. This avoids Monte Carlo (MC) techniques for which traditional MC schemes are notoriously inaccurate
for H � 1 (both in terms of bias and sample variance). From the stochastic Fubini theorem, it is well known that

At =
∫ t

0
Vsds satisfies an equation of the form: At = G0(t) +

∫ t
0
κ(t − s)WAsds for some Brownian motion W

(see e.g. Theorem 3.1 in [JR20]), which is a non-linear VIE for A in terms of the a.s. (1
2 − ε)−Hölder continuous

function W(·), and is still well defined even if κ is only in L1(0, T ); this also allows us to consider the hyper-rough

regime H ∈ (− 1
2 , 0]. If we discretize this SVE and re-write in terms of the final (discrete-time) increments of A and

W , then by Eq. (E-3) in Appendix E, we can use an independent sequence of Inverse Gaussian random variables
to perform an approximate Monte Carlo simulation of A (see Algorithm 1 in [AA25] for details) which is naturally
suited to the regimes H � 1 and H ∈ (− 1

2 , 0]. The variance process V is (H − ε)−Hölder continuous like fBM
(see e.g. Theorem 3.2 in [JR16]) and the spot and VIX smiles exhibit power-law skew for implied volatility in the
small-time limit (see [FGS21], [FSV21], [FGS22] for details). See also [ALP19], [Cuch22], [FG24], [FGS21], [FS21]
for further related results on rough Heston-type models.

In related work, [Jai15] considers two identical i.i.d. Hawkes processes N± with kernel φ ∈ L1(0,∞) and,
assuming that the asset price Pt = const× limu→∞ E[N+

u −N−u |Ft], i.e. a constant times the conditional expected
value of all future order flow, then P is clearly a martingale, but can also be written in the propagator form
Pt =

∫ t
0
ζ(t− u)(dN+

u − dN−u ). If ζ ′(t) = −ζ(0)φ(t) and if ζ(∞) > 0, ζ(∞) is the (non-transient) permanent price
impact component of ζ, and we can compute the expected market impact of an exogenous metaorder executed at
constant rate v over duration τ as MI(t) = v

∫ t∧τ
0

ζ(t− s)ds (see also [JR20] for more on this).

[BL24] improve accuracy in estimating the tail part of the integral for Fourier inversion (for e.g. call options
under the rough Heston model) using a sinh contour which goes outside the usual strip of analyticity for the mgf
(but is admissible as long as it avoid poles of the characteristic function), and also discuss refinements to the usual
Adams schemes for solving the rough Heston VIE. For articles on statistical estimation of H in more general setups,
we refer the reader to [CD24], [HS25], [BF18] (and follow-up papers on the LAN property and minimax theorems),
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, but the Hurst exponent for their family of V ε processes is of course 1

2
since the

models are all standard Heston for ε > 0.
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and the asymptotic normality result for
√
n(Ĥn −H),

√
n

logn (σ̂n − σ) in Theorem 1 in [Syz23] for σBH (where BH

is fBM with σ unknown) for the Whittle approximation (Ĥn, σ̂n) for the MLEs in terms of the Fisher information
matrix in the high-frequency regime.

[AC24] show that a re-scaled standard Markov Heston model with fast mean-reversion and large vol-of-vol (via
an H parameter which is not the Hurst exponent) tends weakly on path space to one of three different models (either
Black-Scholes, a Normal Inverse Gaussian or a Normal Lévy model), depending on whether their H parameter is >,
=, or < − 1

2 . [AAR25] obtain a similar result without any ε parameter but instead letting H ↘ − 1
2 for the so-called

hyper-rough Heston model (see also Section 5 in [FGS21] and Section 7 in [A21] for more on this model), and
exploiting Dirac-type behaviour in their Lemma 2.4 (see Appendix E here for a short summary/formal derivation
of their result).

In this note, we fill in the gap between [AC24] and [AAR25], by showing that a conceptually similar result is
obtained for any H ∈ (0, 1

2 ] (in particular our regime for H = 1
2 corresponds to the regime in Eq. (0.3) in [AC24]

with their H = − 1
2 ). In Section 2, we extend the model to allow positive jumps in V ε, and in this case (using the

Laplace transform of the hitting time to a lower barrier for a spectrally positive Lévy process), we find that the
limiting process for the integrated variance is a deterministic time-change of the first passage time process to lower
barriers for a more general class of Lévy processes (the convergence is proved using a compactness argument with
the Kolmogorov-Riesz-Fréchet theorem).

1.1 Asymptotics for the terminal log stock price for a re-scaled rough Heston model

We work on a probability space (Ω,F ,Q) throughout with filtration (Ft)t≥0 satisfying the usual conditions.

Proposition 1.1 Consider a re-scaled rough Heston model for a log stock price process Xε
t :

dXε
t = −1

2
V εt dt +

√
V εt dBt,

V εt = V0 +
1

Γ(α)

∫ t

0

(t− s)α−1
(1

ε
λ(θ − V εs )ds+

1

ε
ν
√
V εs dWs

)
, (1)

where B and W are two Brownian motions with dBtdWt = ρdt with ρ ∈ [−1, 0], α ∈ ( 1
2 , 1] and λ, ν > 0. Then (for

t > 0 fixed) Xε
t tends weakly to Xt as ε → 0, where X is a Normal Inverse Gaussian Lévy process which does not

depend on H = α− 1
2 .

Proof. Let Iα(f)(t) = 1
Γ(α)

∫ t
0
(t−s)α−1f(s)ds denote the αth-order fractional integral of a function f for α ∈ (0, 1],

and (without loss of generality), we assume Xε
0 = 0. Then for p ∈ (0, 1) (which will be sufficient for our purposes

when we invoke the [Bill86] weak convergence result below)

E[epX
ε
t ] = eV0I

1−αφε(t)+
1
ελθI

1φε(t) (2)

where φε is the unique solution of the non-linear Volterra integral equation (VIE):

φε(t) =
1

Γ(α)

∫ t

0

(t− s)α−1
(1

2
(p2 − p) +

1

ε
(ρpν − λ)φε(s) +

1

ε2

1

2
ν2φε(s)

2
)
ds

(see e.g. Section 4 in [ER19] or Section 7 in [ALP19]). Now let φε(t) = εψ(εqt). Then

εψ(εqt) =
1

Γ(α)

∫ t

0

(t− s)α−1
(1

2
(p2 − p) + (ρpν − λ)ψ(εqs) +

1

2
ν2ψ(εqs)2

)
ds

=
1

Γ(α)

∫ εqt

0

(t− uε−q)α−1
(1

2
(p2 − p) + (ρpν − λ)ψ(u) +

1

2
ν2ψ(u)2

)
du ε−q

=
ε−q(α−1)

Γ(α)

∫ εqt

0

(εqt− u)α−1
(1

2
(p2 − p) + (ρpν − λ)ψ(u) +

1

2
ν2ψ(u)2

)
du ε−q

where we set εqs = u in the second line, so εqds = du. Then setting εqt 7→ t, we see that

εψ(t) =
ε−qα

Γ(α)

∫ t

0

(t− u)α−1F (ψ(u))du (3)

where F (w) = 1
2 (p2 − p) + (ρpν − λ)w + 1

2ν
2w2. If now we let q = − 1

α , the VIE (3) is independent of ε, so

φε(t) = εψ(
t

ε
1
α

).
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Hence for every t > 0 (from Lemma 4.5 in [FGS21])

lim
ε→0

1

ε
φε(t) = lim

t→∞
ψ(t) = ψ(∞) = U1(p) =

1

ν2
[λ− pνρ−

√
λ2 − 2λρνp+ ν2p(1− pρ̄2)]

for p ∈ (0, 1), where ψ(∞) is the smallest root of F and ρ̄2 = 1−ρ2, and the convergence to ψ(∞) is rapid for ε� 1
since 1

εφε(t) = ψ( t

ε
1
α

). More precisely, Lemma 4.5 in [FGS21] can be applied to −ψ, which solves the following

VIE:

−ψ(t) =
1

Γ(α)

∫ t

0

(t− u)α−1F1(−ψ(u))du, with F1(w) =
1

2
(p− p2) + (ρpν − λ)w − 1

2
ν2w2

on R+, since F1(0) > 0 and F1 is analytic and decreasing on R+, the aforementioned result in [FGS21] implies that
−ψ(t) converges as t → ∞ to the positive root of F1, which coincides with −U1(p). Then for the exponent in (2),
we know that 1

εφε(.) = ψ( t

ε
1
α

) is continuous on R+ and admits finite limit at ∞, and thus is bounded), so (by the

dominated convergence theorem) we see that

V0I
1−αφε(t) +

λθ

ε
I1φε(t) =

V0

Γ(1− α)

∫ t

0

(t− s)−αφε(s)ds + λθ

∫ t

0

1

ε
φε(s)ds → 0 + λθU1(p)t

as ε→ 0, and λθU1(p)t is the log mgf of a Normal Inverse Gaussian Lévy process (see e.g. Remark 2.3 in [FJ11]).
Then from e.g. the solution to Problem 30.4 on Page 573 in [Bill86] (which is also used in [GK19]), Xε

t tends weakly
to the marginal law of an NIG process.

Remark 1.1 The quadratic rough Heston (qRHeston) model has generally been more successful than the RHeston
in jointly fitting SPX and VIX smiles,3 but it seems unclear whether the stock price for the qRHeston model is
a true martingale, since the drift term for the Z process explodes quadratically when Z is large under the share
measure P∗ (see e.g. [AP07], [Lew00], [Sin98] for background on this phenomenon). For pricing European options
with Monte Carlo we can just modify the drift or volatility coefficient of the SVE for Z to circumvent this (but
that prevents us from using the exact VIX sampling formula in Chapter 6.2 in [Rom22]); S will of course still
be a martingale for a discrete-time Euler-scheme approximation. The Z process in the qRHeston model satisfies
Zt = Z0 +

∫ t
0
κ(t − s)

√
aZ2

s + c dWs for some κ ∈ L2,4 and for κ(t) = e−λttα−1 i.e. the Gamma kernel as used

in [BG25], E[Z2
t ] ≥ E[Z̃2

t ] where Z̃ satisfies the linear SVE Z̃t = Z0 +
∫ t

0
κ(t− s)

√
aZ̃sdWs. However, we find that

E[Z̃2
t ] → ∞ as t → ∞ when we solve the linear VIE for E[Z̃2

t ] using resolvents (because the solution involves a
Eα,α(·) function with a positive argument tending to +∞), so the Gamma kernel does not produce ergodic behaviour
for Z (or V ) (of course the presence of λ still “tempers” the behaviour of Z in some sense).

2 Adding jumps into V ε

We now assume that the forward variance ξεt (u) := E[V εu |Ft] satisfies

dξεt (u) = κε(u− t)(σ
√
V εt dWt + dJ̃εt ), u > t, (4)

where dJ̃εt =
∫
R+
x(Nε(dx, dt) − V εt ν(dx)dt) and Nε(dx, dt) is a (time-inhomogenous) Poisson random measure

with (random) intensity V εt ν(dx)dt;5 ν only has positive support with ν({0}) = 0 and
∫
R+
x2ν(dx) < ∞, so J̃ε

has positive-only jumps. The kernel κε is defined by κε(t) = 1
ε t
α−1Eα,α(−λε t

α) with α ∈ ( 1
2 , 1) and λ > 0, where

Eα,β(z) denotes the Mittag-Leffler function. We refer to Remark 2.1 below for relevant examples from the literature
that fall within this setting.

The critical observation for the arguments that follow is that fα,λ(t) = λtα−1Eα,α(−λtα) is a probability density,
so λκε(·) has Dirac-type behaviour as ε → 0. We also mention that

∫∞
t
fα,λ(s) ds ∼

t→∞
1

λΓ(1−α) t
−α, which implies

that ∫ ∞
t

λκε(s)ds ∼
ε→0

1

λΓ(1− α)
εt−α (5)

for t > 0 (again see Appendix A.1 of [ER19] for details on these points).

The variance process V ε = (V εt )t≥0 is predictable, non-negative, has trajectories in L1
loc(R+) (see e.g. [A21],

[ACLP21] and [BLP24]) and satisfies the following SVE of convolution-type with jumps:

V εt = ξε0(t) +

∫ t

0

κε(t− s)(σ
√
V εs dWs + dJ̃εs ) , P⊗ dt− a.e., (6)

3see e.g. [BG25] and notes/code on the second author’s website.
4note we can set the b parameter in the model to zero W.L.O.G, and the diffusion coefficient in the SVE for Z is Lipschitz so we can

appeal to the existence and uniqueness result in Theorem 3.3 in [ALP19], and Lemma 3.1 of the same paper.
5see also Eq. (1) and the equation below it in [BPS24], Eq. (14) in [BLP24], Section 5 in [CT20] and Slide 6 in [Cuch22].
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where ξε0 ∈ L1
loc(R+) is the initial variance curve. In particular, V εt = ξεt (t), P−a.s., for a.e. t ∈ (0,∞). Note that

we require V ε to be non-negative in order to consider the square root in (6), while the predictability of V ε with
locally integrable paths ensures that the stochastic integrals in (6) are properly defined. We refer to [A21] for weak
existence results for (6), see also [ACLP21].

The process V ε here is an affine Volterra process with jumps and falls under the framework of [BLP24] (see also
[BPS24]). In particular, [BLP24, Lemma 1] establishes the following integrability property of V ε that we will use
for our analysis:

E
[ ∫ T

0

V εt dt

]
<∞, T > 0. (7)

We also refer to [BLP24, Lemma 12] for a stronger L2−type integrability result which applies to our dynamics in
(6) when ξε0 ∈ L2

loc(R+). From (7), we see that

E
[ ∫ T

0

(∫
R+

|x|2ν(dx)

)
V εt dt

]
<∞, T > 0,

and hence

J̃ε =

∫ ·
0

∫
R+

x(Nε(dx, dt)− V εt ν(dx)dt) is a square-integrable martingale in [0, T ], for every T > 0. (8)

Although we do not explicitly consider the stock price process S in this section, a proof of the martingale
property for S is given in Section 3 of [BPS24].

Note we are now using σ, not ν, for the vol-of-vol term in (4), since ν is being used here for the Lévy density,
and (in the absence of jumps) (4) is the usual equation for the forward variance under the standard rough Heston
model, see e.g. [ER18] or Proposition 2.2 in [FGS21]. The model in (4) can be viewed as a generalized rough Heston
model in the spirit of [BPS24], where the mean-reversion speed, vol-of-vol, and jump-intensity all scale as 1

ε .

Assumption 2.1 We assume that ξε0(·) is non-negative, uniformly bounded and continuous and ξε0(·) tends point-
wise to a bounded continuous function ξ0

0(·) as ε→ 0.

In the following remark, we present two important and standard cases in which Assumption 2.1 is satisfied.

Remark 2.1 The SVE

V εt = V0 +

∫ t

0

K(t− s)1

ε

(
λ(θ − V εs )ds+ σ

√
V εs dWs + dJ̃εs

)
(9)

with K(t) = 1
Γ(α) t

α−1 (with the same jump structure for J̃ε as in (4)) is a special case of Eq. (14) in [BLP24]

with their g0 ≡ V0, b0 = 1
ελθ, B = b1 = −λε , A0 = 0, A1 = 1

ε2σ
2, ν0 = 0, ν1(dx) = 1

εν(dx). From the
last equation on Page 28 in [BLP24], this process is equivalent to (6) (for the corresponding forward variance
processes, compare Remark 5 in [BLP24] with (4)), for which their RB = λκε,

6 EB = K − RB ∗ K = εκε, and

ξε0(·) = g0 −RB ∗ g0 +EB ∗ b0 = V0 − (V0 − θ)
∫ ·

0
fα,

λ
ε (s)ds (which agrees with Proposition 2.1 in [FGS21]). In this

case (from (5)) we find that ξε0(u)→ θ for u > 0 as ε→ 0, which we can also easily obtain from Proposition 2.1 in
[FGS21] since J̃ε is a martingale, so the jumps do not affect ξε0(t) = E[V εt ].

Conversely, if ξ0 in (6) is independent of ε and given exogenously, then we can find a g0 in [BLP24] consistent with
ξ0 by solving the linear VIE g0 −RB ∗ g0 +EB ∗ b0 = ξ0(·); specifically, letting f = ξ0(·)−EB ∗ b0, we can re-write
the VIE as g0 − RB ∗ g0 = f , which has solution g0 = f − f ∗ r. Here r is the resolvent of the 2nd kind of −RB
(which will depend on ε in general).7

Let V1(p) =
∫
R+

(epx − 1− px)ν(dx).8 Notice that, for every p ≤ 0, V1(p) <∞ since |epx − 1− px| ≤ p2|x|2 for

any x ∈ R+.

We now state the main result for this section:

Theorem 2.2 The finite-dimensional distributions of Aε· =
∫ (·)

0
V εs ds tend weakly to those of a time-changed Lévy

process Xg(·), where Xt = inf{s : Zs < −t}, Z is a Lévy process with Lévy triple (−λ, σ2, ν), and g(t) = λ
∫ t

0
ξ0
0(u)du.

6RB is the resolvent of the second kind of −KB, see e.g. Page 13 of [BLP24] for definition.
7A general linear VIE of the form x(τ) + (k ∗ x)(τ) = f(τ) has solution x(τ) = f(τ)− (r ∗ f)(τ) where r is the resolvent of the 2nd

kind of k, which is the unique function r which satisfies r + r ∗ k = k (the resolvent exists if k is locally integrable). To see this, we
substitute x(τ) into the VIE to get x + k ∗ x = x+ k ∗ (f − r ∗ f) = x+ (k − k ∗ r) ∗ f = x+ r ∗ f = f .

8an instructive example to keep in mind here is the case when V1 is the cgf for a one-sided tempered stable (CGMY) process with

ν(dx) = Ce−Mx

x1+Y 1{x>0} for C,M > 0 and Y ∈ (0, 2) \ {1}, for which V1(p) = C(M(M − p)Y +MY (−M + pY ))Γ(−Y ))/M .

4



Remark 2.2 X is a Lévy subordinator, see e.g. Theorem 46.2 in [Sato99]; in particular, if we let (λ̃, 0, ν̃) denote the
Lévy triple of X with respect to the truncation function h(x) ≡ 0, then X has no Gaussian component, ν̃(R−) = 0
and

∫
[0,1]

xν̃(dx) <∞, see e.g. Theorem 21.5 in [Sato99]. Moreover, if ν̃(dx) has a density with respect to Lebesgue

measure, i.e. ν̃(dx) = ν̃(x)dx, then the Lévy Khintchine-type formula in Theorem 25.17 in [Sato99] for XT is:

E[e−pXT ] = eT (−λ̃p+
∫∞
0

(e−px−1)ν̃(x)dx)

for p ≥ 0. Thus Ṽ (−p) := logE[e−pX1 ] = −λ̃p +
∫∞

0
(e−px − 1)ν̃(x)dx, and differentiating both sides with respect

to p, we obtain:

Ṽ ′(−p) = λ̃+

∫ ∞
0

xe−pxν̃(x)dx

for p ≥ 0, so in principle we can recover ν̃ from Ṽ by Laplace inversion.

Proof. Recall that the dynamics of the variance process V ε are given in (6). Let f : [0,∞)→ (−∞, 0] be a locally

bounded function on R+ (i.e., f ∈ L∞loc(R+;R−)). Then from Appendix A (see also [BLP24] and [BPS24]), we know
that for every T > 0

Mt := e
∫ t
0
f(T−s)V εs ds+Gt , t ∈ [0, T ] (10)

is a martingale if 9

Gt =

∫ T

t

gε(T − s)ξεt (s)ds =

∫ T−t

0

G(u, ψε(u)) ξεt (T − u)du,

where gε is a locally bounded function and ψε(τ) :=
∫ τ

0
κε(τ − r)gε(r)dr satisfies the non-linear Riccati-Volterra

integral equation

ψε(t) =

∫ t

0

κε(t− s)G(s, ψε(s))ds (11)

with

G(s, w) = f(s) +
1

2
σ2w2 + V1(w). (12)

Existence and uniqueness for this equation is established in Lemma 2.3 below. Since GT = 0 we see that

Mt = E[MT |Ft] = E
[
e
∫ T
0
f(T−s)V εs ds|Ft

]
.

In particular, at t = 0, taking the expected value we have

E
[
e
∫ T
0
f(T−s)V εs ds

]
= e

∫ T
0
G(s,ψε(s))ξ

ε
0(T−s)ds, (13)

which is the main equation we need.

Lemma 2.3 There exists a unique continuous solution ψε : R+ → R− of Eq. (11).

Proof. See Appendix B.

Remark 2.3 One can give a simpler proof of Lemma 2.3 using a standard fixed point argument if we assume that
λ is sufficiently large.10

Formally, the asymptotic solution to (11) comes from considering its Dirac limit as ε→ 0:

ψ0(t) =
1

λ
G(t, ψ0(t))

(recall from above that λκε(·) has Dirac-type behaviour as ε → 0 so λκε(t − s) will be concentrated at s = t).
Re-arranging terms here, we obtain our conjecture limit equation:

f(t)− λψ0(t) + Ḡ(ψ0(t)) = −λψ0(t) +G(t, ψ0(t)) = 0, t ≥ 0, (14)

where G is defined as in (12) and Ḡ(w) = 1
2σ

2w2 +
∫
R+

(exw − 1 − xw)ν(dx) for w ≤ 0. Since G(t, 0) = f(t) ≤ 0

and the function w 7→ G(t, w)− λw is continuous and decreasing on R−, with G(t, w)− λw →∞ as w → −∞, we
see that there exists a unique non-positive solution ψ0 : R+ → R− to (14). In particular, since f is locally bounded
on R+, ψ0 is locally bounded on R+, as well (i.e., ψ0 ∈ L∞loc(R+;R−)). We now give the main technical lemma of
the theorem:

9the final expression in the next equation just follows from setting u = T − s in the left integral; then s = T − u and ds = −du.
10proof available on request.
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Lemma 2.4 For every T > 0,
lim
ε→0

ψε = ψ0 in L1(0, T ).

Proof. See Appendix C.

Remark 2.4 As with existence and uniqueness above, one can again give a simpler proof here (specifically pointwise
convergence for ψε) if λ is sufficiently large, using a Lipschitz argument with a comparison result for linear VIEs
using resolvents.11

As a corollary of Lemma 2.4, we see that∫ T

0

|G(s, ψε(s))−G(s, ψ0(s))|ds ≤
∫ T

0

(1

2
σ2|ψε(s) + ψ0(s)|+ |h̃(ψε(s), ψ0(s))|

)
|ψε(s)− ψ0(s)|ds

≤ K1

∫ T

0

|ψε(s)− ψ0(s)|ds −→
ε→0

0, (15)

where h̃ is the function defined in (B-6), and

K1 := sup
ε>0

∥∥∥1

2
σ2|ψε + ψ0|+ |h̃(ψε, ψ0)|

∥∥∥
L∞(0,T )

;

since ψ0 is locally bounded on R+, K1 is finite by (C-1) and h̃ is continuous, see Appendix B. Then∣∣∣∣ ∫ T

0

(
G(s, ψε(s))ξ

ε
0(T − s)−G(s, ψ0(s))ξ0

0(T − s)
)
ds

∣∣∣∣ ≤ ∫ T

0

|G(s, ψε(s))−G(s, ψ0(s))| ξ0
0(T − s)ds

+
(

sup
ε>0
‖G(·, ψε)‖L∞(0,T )

)∫ T

0

|ξε0(T − s)− ξ0
0(T − s)|ds

where the last two terms tend to zero as ε→ 0 by (15) and Assumption 2.1. Hence from (13) and (14) we see that

lim
ε→0

E
[
e
∫ T
0
f(T−s)V εs ds

]
= lim
ε→0

e
∫ T
0
G(s,ψε(s))ξ

ε
0(T−s)ds

= e
∫ T
0
G(s,ψ0(s))ξ00(T−s)ds = eλ

∫ T
0
ψ0(s)ξ00(T−s)ds. (16)

We now characterize the process which has (16) as its characteristic function.
For a Lévy process Z with Lévy triple (−λ, σ2, ν), euZt−Λ(u)t is an FZt −martingale for u ≤ 0, where Λ(u) =
−λu+ 1

2σ
2u2 + V1(u); this is a consequence of the stationary and independent increments property, together with

Theorem 25.17 in [Sato99] (see (D-4) below for an analogous argument). From Proposition D.1 in Appendix D
applied to the spectrally negative process −Z (see also e.g. Theorem 46.3 in [Sato99] or Eq. (2.5) in [KKR13] for
an alternative proof), we know that

E[e−qHa ] = e−Λ−1(q)a = eΛ−1(q)|a| (17)

for q ≥ 0 and a ≤ 0, where Ha := inf{t ≥ 0 : Zt < a} and Λ−1(q) ≤ 0 denotes the inverse function of Λ.

Now let Xt = H−t (not the same X process as in Subsection 1.1), which is a Lévy subordinator, see Remark 2.2
and the references therein. Then from the i.i.d. property for Lévy processes, (17) and the fundamental theorem of
calculus, considering a right continuous non-positive piecewise constant function f we have, for any continuously
differentiable nondecreasing function g starting from 0,

E
[
e
∫ T
0
f(T−s)d(Xg(s))

]
= e

∫ T
0

Λ−1(|f(T−s)|)g′(s)ds = e
∫ T
0

Λ−1(−f(s))g′(T−s)ds (18)

(see also Lemma 15.1 in [CT04], which is used in [AAR25]). But Λ−1(−f(·)) is ψ0(·) from Eq. (14). Hence for
0 ≤ s1 < · · · < sn < T , choosing a right continuous map f such that

f(T − s) = (u1 + u2 + ...+ un)1{0≤s≤s1} + (u2 + ...+ un)1{s1<s≤s2} + ...+ un1{sn−1<s≤sn}, s ∈ [0, T ]

with u1, u2, . . . , un ≤ 0, we see that∫ T

0

f(T − s)V εs ds = u1A
ε
s1 + ... + unA

ε
sn ,

∫ T

0

f(T − s)dXg(s) = u1Xg(s1) + ... + unXg(sn),

where Aεt =
∫ t

0
V εs ds. Therefore by (16) and (18) (again by Problem 30.4 in [Bill86]) we deduce that the finite-

dimensional distributions of Aε· =
∫ (·)

0
V εs ds converge weakly to those of the time-changed Lévy process Xg(t) with

g′(t) = λξ0
0(t) and g(0) = 0. The proof is now complete.

11proof available on request.
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Figure 1: Here we have plotted ψε in Eq. (19) (in blue) and ψ0 in Eq. (14) (grey dashed), using an Adams
scheme with 2000 time steps with ε = .01, H = 0.2, ν = .4, λ = 1, T = 1, f(s) = − 1

2 (1{s< 1
2}

+ 1{s≤1}) and

ν(x) = Ce−Mx

x1+Y 1{x>0} for C = 1, M = 3 and Y = 1.5, and we see convergence to ψ0 (see e.g. [BL24] for details on
refinements to Adams schemes). Numerically solving the VIE in Eq. (11) for ε� 1 appears to be much harder due
to the Dirac nature of the kernel.

Remark 2.5 For the process V ε in (9), if we instead set Mt = e
∫ t
0
f(T−s)V εs ds+Gt with Gt =

∫ T
t
g̃ε(T − s)gεt (s)ds

and we define the “adjusted forward process” gεt (s) as in Eq. (3) in [BPS24] (see also Eq. (37) in [BLP24]) by

gεt (s) = V0 +
λθ

ε

∫ s

0

K(r)dr +

∫ t

0

K(s− r)1

ε

(
− λV εr dr + σ

√
V εr dWr + dJ̃εr

)
for s > t, so gεt (t) = V εt , P−a.s., for a.e. t > 0 (with K(t) = 1

Γ(α) t
α−1), then following arguments analogous to those

in Appendix A we can check that ψε in (11) satisfies

εψε(τ) =

∫ τ

0

K(τ − s)
(
f(s)− λψε(s) +

1

2
σ2ψε(s)

2 + V1(ψε(s))
)
ds, τ ≥ 0. (19)

We refer to Remark 5 in [BLP24] (see also Lemma 4.4 in [ALP19]) for a variation of constants argument showing
the equivalence between (11) and (19). According to Lemma 2.4, the limiting solution as ε→ 0 is ψ0 (we test this
numerically in Figure 1).
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Appendix

A Derivation of the VIE for ψε

We set ε = 1 and drop the ε superscripts to ease notation since the arguments will be exactly the same for

general ε > 0. Fix T > 0. Recall that Gt =
∫ T
t
g(T − s)ξt(s)ds for a locally bounded function g, dξt(u) =

κ(u− t)(σ
√
VtdWt + dJ̃t) and Mt = e

∫ t
0
f(T−s)Vsds+Gt . In integral form

ξt(u) = ξ0(u) +

∫ t

0

κ(u− s)(σ
√
VsdWs + dJ̃s), u > t;

since Vu = ξ0(u) +
∫ u

0
κ(u− s)(σ

√
VsdWs + dJ̃s), it follows that

Vu1{u≤t} + ξt(u)1{u>t} = ξ0(u) +

∫ t

0

1{s≤u}κ(u− s)(σ
√
VsdWs + dJ̃s). (A-1)

Then we can re-write Gt =
∫ T
t
g(T − s)ξt(s)ds as

Gt =

∫ T

t

g(T − s)ξ0(s)ds+

∫ T

t

g(T − s) (ξt(s)− ξ0(s)) ds

=

∫ T

0

g(T − s)ξ0(s)ds−
∫ t

0

g(T − s)ξ0(s)ds+

∫ T

t

g(T − s) (ξt(s)− ξ0(s)) ds

=

∫ T

0

g(T − s)ξ0(s)ds−
∫ t

0

g(T − s)Vsds+

∫ t

0

g(T − s)(Vs − ξ0(s))ds+

∫ T

t

g(T − s) (ξt(s)− ξ0(s)) ds

=

∫ T

0

g(T − s)ξ0(s)ds−
∫ t

0

g(T − s)Vsds+

∫ T

0

g(T − s)
(

(Vs − ξ0(s))1{s≤t} + (ξt(s)− ξ0(s))1{s>t}

)
ds

=

∫ T

0

g(T − s)ξ0(s)ds−
∫ t

0

g(T − s)Vsds+

∫ T

0

g(T − s)
(∫ t

0

1{r≤s}κ(s− r)(σ
√
VrdWr + dJ̃r)

)
ds

=

∫ T

0

g(T − s)ξ0(s)ds−
∫ t

0

g(T − s)Vsds+

∫ t

0

(∫ T

r

κ(s− r)g(T − s)ds
)

(σ
√
VrdWr + dJ̃r).

Here, in the second [resp., third] equality we add and subtract
∫ t

0
g(T − s)ξ0(s)ds [resp.,

∫ t
0
g(T − s)Vsds], in the

fourth we combine the last two integrals on the previous line using indicator functions, in the fifth we apply (A-1)
and the last equality holds by the stochastic Fubini theorem, see [Prot05, Theorem IV.65]. More specifically, the
application of this version of the stochastic Fubini theorem is justified because∫ T

0

1{s>r}|κ(s− r)|2|g(T − s)|2ds ≤ ‖κ‖2L2(0,T )‖g‖
2
L∞(0,T ), r ∈ [0, t].
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Recalling that dJ̃t =
∫
R+
x(N(dx, dt) − Vtν(dx)dt) is a square-integrable martingale (see (8)), the boundedness of

the process r 7→
∫ T

0
1{s>r}|κ(s− r)|2|g(T − s)|2ds in [0, t] ensures that(∫ T

0

1{s>·}|κ(s− ·)|2|g(T − s)|2ds
) 1

2

is integrable in the semimartingale σ

∫ ·
0

√
VrdWr + J̃ .

Additionally, for a.e. s ∈ [0, T ], the process

g(T − s)
∫ u

0

1{r<s}κ(s− r)(σ
√
VrdWr + dJ̃r), u ∈ [0, t] (A-2)

is càdlàg in [0, t]. Indeed, by Tonelli’s theorem∫ T

0

|g(T − s)|2E
[ ∫ t

0

1{r<s}|κ(s− r)|2
(
σ2 +

∫
R+

|x|2ν(dx)

)
Vrdr

]
ds

≤ ‖g‖2L∞(0,T )

(
σ2 +

∫
R+

|x|2ν(dx)

)
E
[ ∫ t

0

(∫ T

0

1{r<s}|κ(s− r)|2ds
)
Vrdr

]
≤ ‖κ‖2L2(0,T )‖g‖

2
L∞(0,T )

(
σ2 +

∫
R+

|x|2ν(dx)

)
E
[ ∫ t

0

Vrdr

]
<∞,

where for the final estimate we use that V ∈ L1(Ω× [0, T ]), see (7). Therefore

E
[ ∫ t

0

1{r<s}|κ(s− r)|2
(
σ2 +

∫
R+

|x|2ν(dx)

)
Vrdr

]
<∞, for a.e. s ∈ [0, T ].

This demonstrates that, for a.e. s ∈ [0, T ], the process r 7→ g(T − s)1{r<s}κ(s− r) is integrable with respect to the

(semi)martingale σ
∫ ·

0

√
VrdWr + J̃ in [0, t]. Thus, the desired càdlàg property of the stochastic integrals in (A-2)

follows by construction.

By Ito’s lemma, supposing that t 7→
∫ T
t
κ(s− t)g(T −s)ds is non-positive and denoting by N(dx, dt) the random

measure with compensator Vtν(dx)dt, we infer that

dMt

Mt−
= f(T − t)Vtdt− g(T − t)Vtdt+

(∫ T

t

κ(s− t)g(T − s)ds
)

(σ
√
VtdWt + dJ̃t)

+
1

2
σ2

(∫ T

t

κ(s− t)g(T − s)ds
)2

Vtdt

+

∫
R+

(
ex

∫ T
t
κ(s−t)g(T−s)ds − 1− x

(∫ T

t

κ(s− t)g(T − s)ds
))

N(dx, dt)

= Vt

(
f(T − t)− g(T − t) +

1

2
σ2

(∫ T

t

κ(s− t)g(T − s)ds
)2

+ V1

(∫ T

t

κ(s− t)g(T − s)ds
))

dt

+ loc. martingale term, (A-3)

where in the last equality we add and subtract VtV1(
∫ T
t
κ(s − t)g(T − s)ds)dt (recall that the map V1 is defined

before the statement of Theorem 2.2). Then we see that Mt is a local martingale if g satisfies the VIE:

g(T − t) = f(T − t) +
1

2
σ2
(∫ T

t

g(T − s)κ(s− t)ds
)2

+ V1

(∫ T

t

κ(s− t)g(T − s)ds
)
, for a.e. t ∈ [0, T ] . (A-4)

Setting τ = T − t and r = T − s (so s = T − r and s − t = T − r − (T − τ) = τ − r), we can re-write∫ T
T−τ g(T − s)κ(s− t)ds =

∫ τ
0
κ(τ − r)g(r)dr, so

g(τ) = f(τ) +
1

2
σ2
(∫ τ

0

κ(τ − r)g(r)dr
)2

+ V1

(∫ τ

0

κ(τ − r)g(r)dr
)
.

Setting ψ(τ) =
∫ τ

0
κ(τ − r)g(r)dr and taking the convolution of both sides with κ, we can re-cast this in terms of

ψ as

ψ(τ) =

∫ τ

0

κ(τ − s)
(
f(s) +

1

2
σ2ψ(s)2 + V1(ψ(s))

)
ds .

We now argue that, when g satisfies (A-4), Mt is in fact a true martingale.12 From (A-3), since the drift term
vanishes by (A-4), expanding the expression of the local martingale term yields

dMt

Mt−
=

(∫ T

t

κ(s− t)g(T − s)ds
)
σ
√
VtdWt +

∫
R+

(
ex

∫ T
t
κ(s−t)g(T−s)ds − 1

)
(N(dx, dt)− Vtν(dx)dt),

12see also related discussion below Eq. (2.19) in [GK19].
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which means that, denoting by E the Doléans-Dade exponential,

Mt =e
∫ T
0
g(T−s)ξ0(s)ds

× E
(∫ t

0

(∫ T

r

κ(s− r)g(T − s)ds
)
σ
√
VrdWr +

∫ t

0

∫
R+

(
ex

∫ T
r
κ(s−r)g(T−s)ds − 1

)
(N(dx, dr)− Vrν(dx)dr)

)
.

Since t 7→
∫ T
t
κ(s − t)g(T − s)ds is non-positive and bounded, the martingale property of Mt is a consequence of

Lemma 6.1 in [A21], see also Lemma 3.2 in [BPS24].

B Existence and uniqueness for the VIE for ψε

We first recall the Riccati-Volterra integral equation in (11), which we re-write as

ψε(t) =

∫ t

0

κε(t− s)f(s)ds+

∫ t

0

κε(t− s)
(

1

2
σ2ψ2

ε(s) +

∫
R+

(exψε(s) − 1− xψε(s))ν(dx)

)
ds

= (κε ∗ f)(t) +
(
κε ∗

(1

2
σ2ψ2

ε + V1(ψε)
))

(t), t ≥ 0. (B-1)

By Theorem 3.1, Chapter 5 in [GLS90], κε is completely monotone, and by Theorem 2.2, Chapter 2 in [GLS90],

t 7→ (κε ∗ f)(t) is continuous on R+ (as f ∈ L∞loc(R+;R−)). Moreover, the function G̃ defined by the relation

G̃(w)− 1

2
σ2w2 =

{
0, w > 0∫
R+

(exw − 1− xw)ν(dx), w ≤ 0

is continuous and non-negative on R. Then by Theorem 1.1, Chapter 12 in [GLS90], there exists a continuous

noncontinuable13 local solution ψ̃ε of the equation

ψ̃ε(t) = (κε ∗ f)(t) + (κε ∗ G̃(ψ̃ε))(t), t ∈ [0, Tmax), (B-2)

for some Tmax > 0. Then, noting that G̃ = 1
2σ

2(·)2 + V1(·) on R−, from the following lemma we know that ψ̃ε also
solves (B-1) on [0, Tmax):

Lemma B.1 ψ̃ε is non-positive.

Proof. For convenience we define h : R→ R− by

h(w) =

{
1
w

∫
R+

(ewx − 1− wx)ν(dx), w < 0,

0, w ≥ 0;
(B-3)

(which is continuous and non-positive), so 1
2σ

2w2 + w · h(w) = G̃(w) for w ∈ R.
Then, for every T ∈ (0, Tmax), from (B-2)

ψ̃ε(t) = (κε ∗ f)(t) +

∫ t

0

κε(t− s)
(

1

2
σ2ψ̃ε(s) + h(ψ̃ε(s))

)
ψ̃ε(s)ds, t ∈ [0, T ].

By Remark B.6 in [AE19] (which allows to consider a possibly discontinuous function f) and recalling that f ≤ 0,

this reformulation enables us to use Theorem C.1 in [AE19] and conclude that ψ̃ε ≤ 0 in [0, Tmax), as T is arbitrary.

To prove that a noncontinuable R−−valued solution ψε of (B-1) is global, we note that 1
2σ

2ψ2
ε + V1(ψε) ≥ 0 in

[0, Tmax), so (B-1) yields
(κε ∗ f)(t) ≤ ψε(t) ≤ 0, t ∈ [0, Tmax). (B-4)

Since κε ∗ f is continuous and dominates ψε on [0, Tmax), ψε cannot explode to −∞ at Tmax. Then, given that by
Theorem 1.1, Chapter 12 in [GLS90],

lim sup
t→Tmax

|ψε(t)| =∞ if Tmax <∞,

we conclude that Tmax =∞.

To establish uniqueness, let ψ1, ψ2 be two R−−valued solutions of (B-1) defined on R−. Then setting δ = ψ1−ψ2,

δ(t) =

∫ t

0

κε(t− s)
(

1

2
σ2(ψ1(s) + ψ2(s))δ(s) +

∫
R+

(
exψ1(s) − exψ2(s) − x(ψ1(s)− ψ2(s))

)
ν(dx)

)
ds. (B-5)

13see Page 343 in [GLS90] for definition.
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Now let R2
− = {(w1, w2) ∈ R2, w1 ≤ 0 and w2 ≤ 0} denote the negative quadrant of the plane, and define the

auxiliary function h̃ : R2
− → R by

h̃(w1, w2) =

{
1

w1−w2

∫
R+

(exw1 − exw2 − x(w1 − w2))ν(dx), w1 6= w2,∫
R+
x(exw1 − 1)ν(dx), otherwise.

(B-6)

The map h̃ is non-positive on its domain R2
−, because w 7→ exw − xw is nonincreasing on R− for every x ∈ R+. By

the dominated convergence theorem h̃ is continuous on R2
− \ {(w1, w2), w1 6= w2}. To prove the continuity at the

points (w1, w2) ∈ R2
− with w1 = w2, consider two sequences (w1,n)n, (w2,n)n ⊂ R− such that

w1,n 6= w2,n and lim
n→∞

w1,n = w1 = w2 = lim
n→∞

w2,n.

Without loss of generality, suppose that w1,n > w2,n for every n ∈ N. We then compute, using the inequality
|eu − 1− u| ≤ |u|2 for u ∈ R−,∣∣∣h̃(w1,n, w2,n)− h̃(w1, w2)

∣∣∣
≤ 1

|w1,n − w2,n|

∫
R+

exw1,n

∣∣∣ex(w2,n−w1,n) − 1− x(w2,n − w1,n)
∣∣∣ν(dx) +

∫
R+

x
∣∣∣exw1,n − exw1

∣∣∣ν(dx)

≤
(∫

R+

|x|2ν(dx)|
)
|w2,n − w1,n|+ o(1) −→

n→∞
0.

Considering that h̃(w1,n, w1,n)→ h̃(w1, w2) by dominated convergence, the previous computations prove the conti-

nuity of h̃ at (w1, w2) with w1 = w2.

From the definition of h̃, we have∫
R+

(
exψ1(s) − exψ2(s) − x(ψ1(s)− ψ2(s)

)
ν(dx) = h̃(ψ1(s), ψ2(s))δ(s), s ≥ 0,

hence (from (B-5)) δ solves the linear VIE:

δ(t) =

∫ t

0

κε(t− s)
(

1

2
σ2(ψ1(s) + ψ2(s)) + h̃(ψ1(s), ψ2(s))

)
δ(s)ds.

This equation admits δ ≡ 0 as its unique solution by the first part of Theorem C.1 in [AE19], whence we conclude
that ψ1 = ψ2. This proves that (B-1) has a unique continuous global R−−valued solution.

C L1−convergence for ψε

We recall that f is a locally bounded non-positive function defined on R+, which we also write as f ∈ L∞loc(R+;R−).

C.1 Relative compactness in L1

Fix T > 0 and a sequence (εn)n ⊂ (0,∞) which converges to 0.

Lemma C.1 (ψεn)n admits a convergent subsequence in L1(0, T ).

Proof. (ψεn)n is bounded in L1(0, T ) because (from (B-4)) we know that

‖ψε‖L∞(0,T ) ≤ ‖κε ∗ f‖L∞(0,T ) ≤ ‖κε‖L1(0,T )‖f‖L∞(0,T ) ≤
1

λ
‖f‖L∞(0,T ). (C-1)

Now define the extended maps ψ̄n : R→ R− by

ψ̄n(t) =

{
ψεn(t), t ∈ [0, T ],

0, otherwise.

To prove the lemma, by the Kolmogorov-Riesz-Fréchet theorem (see e.g. Theorem 4.26 in [Brez11]), it suffices to
show that

lim
h→0
‖τhψ̄n − ψ̄n‖L1(R) = 0 uniformly in n, (C-2)

where τh is the translation operator defined by τhg(x) = g(x+ h) for an arbitrary function g : R→ R.
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Consider the case h > 0; when h < T , by (B-1), recalling (B-3) and (B-6),

τhψ̄n(t)− ψ̄n(t) = (κεn ∗ f)(t+ h)− (κεn ∗ f)(t)

+

∫ t+h

t

κεn(s)
(1

2
σ2ψ̄n(t+ h− s) + h(ψ̄n(t+ h− s))

)
ψ̄n(t+ h− s)ds

+

∫ t

0

κεn(s)φn(t− s;h)(τhψ̄n(t− s)− ψ̄n(t− s))ds

:= In,h(t) + IIn,h(t) + (κεn ∗ (φn(·;h)(τhψ̄n − ψ̄n)))(t), t ∈ [0, T − h],

where In,h(t) and IIn,h(t) refer to the first and second lines respectively on the right hand side here, and

φn(t;h) =
1

2
σ2(τhψ̄n(t) + ψ̄n(t)) + h̃(τhψ̄n(t), ψ̄n(t)), t ∈ R. (C-3)

Hence χ = τhψ̄n − ψ̄n − In,h − IIn,h solves the linear VIE

χ = κεn ∗ (φn(·;h)(τhψ̄n − ψ̄n)) = κεn ∗ (φn(·;h)χ+ φn(·;h)(In,h + IIn,h))

on the interval [0, T −h]. In,h, IIn,h and φn(·;h) are continuous on [0, T −h], so (given that φn(·;h) is non-positive),
Theorem C.3 in [AE19] implies that

|(τhψ̄n − ψ̄n)(t)| ≤ |In,h(t)|+ |IIn,h(t)|+ (κεn ∗ |φn(·;h)(In,h + IIn,h)|)(t), t ∈ [0, T − h]. (C-4)

We compute∫ T−h

0

(∫ t+h

t

κεn(s)|f(t+ h− s)|ds
)
dt =

∫ T−h

0

(∫ T

0

1{s<t+h}1{s>t}κεn(s)|f(t+ h− s)|ds
)
dt

=

∫ T

0

κεn(s)

(∫ T−h

0

1{t<s}1{t>s−h}|f(t+ h− s)|dt
)
ds (by Tonelli)

≤
∫ h

0

κεn(s)

(∫ s

0

|f(t+ h− s)|dt
)
ds+

∫ T

h

κεn(s)

(∫ s

s−h
|f(t+ h− s)|dt

)
ds ≤ 2

λ
h‖f‖L∞(0,T ), (C-5)

where h appears in the final term since both inner integrals have range ≤ h. Thus, denoting by f̄ = f1[0,T ] ∈ L∞(R)
and using Theorem 2.2, Chapter 2 in [GLS90],∫ T−h

0

|In,h(t)|dt ≤
∫ T−h

0

∫ t

0

(
κεn(s)|(τhf − f)(t− s)|ds

)
dt+

∫ T−h

0

(∫ t+h

t

κεn(s)|f(t+ h− s)|ds
)
dt

≤
(∫ T−h

0

κεn(s)ds

)
‖τhf̄ − f̄‖L1(R) +

2

λ
h‖f‖L∞(0,T ) ≤

1

λ
‖τhf̄ − f̄‖L1(R) +

2

λ
h‖f̄‖L∞(R).

Since these estimates do not depend on n ∈ N, the continuity of the translation in L1(R) (see, for instance, Lemma
4.3 in [Brez11]) yields that

lim
h→0+

∫ T−h

0

|In,h(t)|dt = 0 uniformly in n. (C-6)

Given that (ψ̄n)n is bounded in L∞(R) by (C-1) and h(·) (defined in (B-3)) is continuous on R, the same compu-
tations as in (C-5) (but with 1 in place of f) show that

lim
h→0+

∫ T−h

0

|IIn,h(t)|dt = 0 uniformly in n. (C-7)

Then (again by (C-1) and the continuity of h̃), there exists a constant C > 0 such that

|φn(t;h)| ≤ C, t, h ∈ R, n ∈ N,

where φn(·;h) is defined in (C-3). Therefore∫ T−h

0

|(κεn ∗ |φn(·;h)(In,h + IIn,h)|)(t)|dt ≤ C 1

λ

∫ T−h

0

(|In,h(t)|+ |IIn,h(t)|)dt,

whence (by (C-6) and (C-7)),

lim
h→0+

∫ T−h

0

|(κεn ∗ |φn(·;h)(In,h + IIn,h)|)(t)|dt = 0 uniformly in n. (C-8)
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Combining (C-6), (C-7) and (C-8) in (C-4) we deduce that

lim
h→0+

‖τhψ̄n − ψ̄n‖L1(0,T−h) = 0 uniformly in n. (C-9)

On the interval [−h, 0] the maps ψ̄n equal 0, hence, by (C-1),

‖τhψ̄n − ψ̄n‖L1(−h,0) =

∫ 0

−h
|τhψ̄n(t)|dt ≤

(
sup
n
‖ψ̄n‖L∞(R)

)
h −→
h→0+

0 uniformly in n.

In a similar way, on the interval [T − h, T ]

‖τhψ̄n − ψ̄n‖L1(T−h,T ) =

∫ T

T−h
|ψ̄n(t)|dt ≤

(
sup
n
‖ψ̄n‖L∞(R)

)
h −→
h→0+

0 uniformly in n.

The three previous equations yield

lim
h→0+

‖τhψ̄n − ψ̄n‖L1(R) = 0 uniformly in n.

When h < 0, assuming without loss of generality that |h| < T we can simply write

‖τhψ̄n − ψ̄n‖L1(R) = ‖ψ̄n‖L1(0,|h|) + ‖τhψ̄n‖L1(T,T+|h|) + ‖ψ̄n − τhψ̄n‖L1(|h|,T )

≤ 2
(

sup
n
‖ψ̄n‖L∞(R)

)
|h|+ ‖τ|h|ψ̄n − ψ̄n‖L1(0,T−|h|) −→

h→0−
0 uniformly in n,

where we use (C-9) for the last limit. Therefore (C-2) is verified and the proof is complete.

C.2 Characterization of the limit points of ψε

Lemma C.2 For every T > 0 and g ∈ L1(0, T ),

lim
ε→0

∫ T

0

∣∣∣(κε ∗ g)(t)− 1

λ
g(t)

∣∣∣dt = 0,

i.e. κε ∗ g converges to 1
λg in L1(0, T ) as ε→ 0.

Proof. Let c > 0. By the continuity of the translation in L1(R) (see e.g. Lemma 4.3 in [Brez11]), there exists an

η = η(c) ∈ (0, T ) such that, defining ḡ = g1[0,T ] ∈ L1(R),
∫ T

0
|ḡ(t− s)− ḡ(t)|dt < c, and hence∫ T

s

|g(t− s)− g(t)|dt < c,

for s ∈ (0, η). Then from Tonelli’s theorem and some straightforward manipulations,∫ T

0

∣∣∣(κε ∗ g)(t)− 1

λ
g(t)

∣∣∣dt ≤ ∫ T

0

(∫ t

0

κε(s)|g(t− s)− g(t)|ds+ |g(t)|
(

1

λ
−
∫ t

0

κε(s)ds

))
dt

=

{∫ η

0

+

∫ T

η

}
κε(s)

(∫ T

s

|g(t− s)− g(t)|dt
)
ds+

∫ T

0

|g(t)|
(

1

λ
−
∫ t

0

κε(s)ds

)
dt

≤ 1

λ
c+ 2‖g‖L1(0,T )

∫ T

η

κε(s)ds+

∫ T

0

|g(t)|
(

1

λ
−
∫ t

0

κε(s)ds

)
dt,

and hence (by the dominated convergence theorem and (5)),

lim sup
ε→0

∫ T

0

∣∣∣(κε ∗ g)(t)− 1

λ
g(t)

∣∣∣dt ≤ 1

λ
c.

Since c can be chosen arbitrarily small the proof is complete.

Now recall the ε = 0 solution ψ0 defined in (14). Then we have the following:

Lemma C.3 Consider T > 0 and a sequence (εn)n ⊂ (0,∞) which converges to 0. Suppose that there exists a
non-positive function ψ̄ ∈ L1(0, T ) ∩ L∞(0, T ) such that ψεn → ψ̄ in L1(0, T ). Then ψ̄ = ψ0 a.e. in (0, T ).
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Proof. Recall our original VIE in (B-1): ψε = κε ∗ f + κε ∗ Ḡ(ψε). Multiplying by λ, taking the difference with
(14), and adding and subtracting λ(κεn ∗ Ḡ(ψ̄))(t), we see that

λ(ψεn(t)− ψ0(t))

= λ(κεn ∗ f)(t)− f(t) + λ(κεn ∗ (Ḡ(ψεn)− Ḡ(ψ̄)))(t) + λ(κεn ∗ Ḡ(ψ̄))(t)− Ḡ(ψ0(t)), t ∈ [0, T ]. (C-10)

By Lemma C.2, considering that Ḡ(ψ̄(·)) belongs to L1(0, T ) because ψ̄ ∈ L1(0, T ) ∩ L∞(0, T ) = L∞(0, T ),

lim
n→∞

‖λ(κεn ∗ f)− f‖L1(0,T ) = 0 and lim
n→∞

‖λ(κεn ∗ Ḡ(ψ̄))− Ḡ(ψ̄(·)‖L1(0,T ) = 0.

and

λ‖κεn ∗ (Ḡ(ψεn)− Ḡ(ψ̄))‖L1(0,T ) ≤ λ‖κεn‖L1(0,T )‖Ḡ(ψεn)− Ḡ(ψ̄)‖L1(0,T )

≤ sup
n∈N

(
1

2
σ2‖ψεn + ψ̄‖L∞(0,T ) + ‖h̃(ψεn , ψ̄)‖L∞(0,T )

)
‖ψεn − ψ̄‖L1(0,T )

≤
(

1

2
σ2
( 1

λ
‖f‖L∞(0,T ) + ‖ψ̄‖L∞(0,T )

)
+ sup
n∈N
‖h̃(ψεn , ψ̄)‖L∞(0,T )

)
‖ψεn − ψ̄‖L1(0,T ) −→

n→∞
0.

Note that h̃ is continuous, and hence bounded in compact sets, and since ψεn and ψ̄ are (uniformly) bounded, they
take value in a compact set (ball), a.e., so the supremum in the final line is finite. Thus, from (C-10) we deduce
that

λ(ψ̄(t)− ψ0(t)) = Ḡ(ψ̄(t))− Ḡ(ψ0(t)) =

(
1

2
σ2(ψ̄(t) + ψ0(t)) + h̃(ψ̄(t), ψ0(t))

)
(ψ̄(t)− ψ0(t)), for a.e. t ∈ (0, T ).

This implies that ψ̄ = ψ0 a.e. in (0, T ). Indeed, if there exists a subset N ⊂ (0, T ) with positive Lebesgue measure
where ψ̄ 6= ψ0, then dividing the previous equation by ψ̄ − ψ0 gives

λ =
1

2
σ2(ψ̄(t) + ψ0(t)) + h̃(ψ̄(t), ψ0(t)) < 0 a.e. in N,

which is a contradiction since λ > 0. The proof is now complete.

C.3 Conclusion

From Lemma C.1, we know that every sequence (ψεn)n of solutions to (B-1) (where (εn)n ⊂ (0,∞) converges to 0
as n→∞) admits a convergent subsequence (ψεnk )k in L1(0, T ). Since (ψε)ε>0 is a bounded family of (continuous)

non-positive functions in L∞(0, T ), see (C-1), the limit point of this subsequence belongs to L1(0, T ) ∩ L∞(0, T )
and is non-positive, as well.
By Lemma C.3 in Subsection C.2, there exists a unique possible non-positive L1(0, T )−limit point for (ψεnk )k
in L1(0, T ) ∩ L∞(0, T ): ψ0, the unique non-positive solution of (14). Therefore, by the subsequence convergence
principle we conclude that

lim
ε→0

ψε = ψ0 in L1(0, T ).

D Laplace transform of hitting time to an upper barrier for a spec-
trally negative Lévy process

Let X be a spectrally negative one-dimensional Lévy process, i.e. νX(0,∞) = 0, where νX is the Lévy measure
associated with X, and assume X0 = 0. Suppose that νX satisfies∫

(−∞,−1)

|x|νX(dx) <∞; (D-1)

by general properties of Lévy processes (see e.g. Theorem 25.3 in [Sato99]), (D-1) ensures that E[|Xt|] < ∞ for
every t > 0.
In the next proposition, we establish a formula for the Laplace transform of the first hitting time of X to upper
(non-negative) barriers.

Proposition D.1 Consider a spectrally negative one-dimensional Lévy process X with Lévy measure νX satisfying
(D-1). Suppose that

γ := E[X1] ≥ 0.

For every b ≥ 0, denote by τb the first hitting time of X to b, i.e. τb = inf{t ≥ 0 : Xt > b}, and define the function
V : R+ → R+ by

V (p) :=
1

2
(σX)2p2 + γp+

∫
R−

(epx − 1− px)νX(dx), p ≥ 0,
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where σ2
X ≥ 0 denotes the Gaussian component of X. Then for all q ≥ 0

E[e−qτb ] = e−bV
−1(q), (D-2)

where V −1 is the inverse of V .

Proof. By Theorem 25.17 in [Sato99], for all p ≥ 0 we have

logE[epXt ] = tV (p), t ≥ 0. (D-3)

Thus, V is the logarithmic moment generating function (or cgf) of X1 on R+. It then follows from Lemma 2.2.5 in
[DZ98] that V is convex. Moreover, V is continuous and differentiable, with

V ′(p) = γ + (σX)2p+

∫
R−

x(epx − 1)νX(dx), p ≥ 0.

Since V ′ > 0 on (0,∞), V is increasing on R+ and limp→∞ V (p) =∞.
From the stationary and independent increments property one can easily verify that Mt := epXt−V (p)t is an

FXt −martingale. Indeed, for 0 ≤ s ≤ t,

E[Mt|FXs ] = E
[
ep(Xt−Xs)|FXs

]
epXs−V (p)t = E

[
epXt−s

]
epXs−V (p)t = Ms, (D-4)

where we use (D-3) for the third equality.
Now choose p > 0. Then applying the Optional Stopping Theorem to the bounded stopping time t ∧ τb we have

1 = E[Mt∧τb(1{τb≤t} + 1{τb>t})] = E[epb−V (p)τb 1{τb≤t}] + E[epXt−V (p)t1{τb>t}] .

Here for the second equality we use that Xτb = b when τb <∞ (P−a.s.), because X can only have negative jumps.
Using the monotone convergence theorem and that limt→∞ 1{τb≤t} = 1{τb<∞} for the left term, and the bounded

convergence theorem for the right term (with the bound epb, since V > 0 on (0,∞)), we can take the limit as t→∞
and take the limit inside the expectation to obtain

1 = E[epb−V (p)τb 1{τb<∞}].

V is a bijection from R+ onto itself (since γ ≥ 0), so we can re-write this as

E[e−qτb1{τb<∞}] = e−bV
−1(q), q > 0. (D-5)

Letting q ↘ 0 and using the bounded convergence theorem again, we see that

P(τb <∞) = E[1{τb<∞}] = e−bV
−1(0+),

where V −1(0+) = limq↘0 V
−1(q). Considering that V −1 is continuous on R+, we deduce that V −1(0+) = V −1(0) =

0. Consequently, τb <∞ P−a.s. and (D-5) becomes (D-2), completing the proof.

Remark D.1 When γ > 0, for every b ≥ 0 the finiteness of the stopping time τb can be directly inferred from the
LLN in Theorem 36.5 of [Sato99].

E Brief formal derivation of the main idea in [AAR25]

Consider a family of hyper-rough Heston models14 (with zero mean-reversion for simplicity) for which the quadratic
variation of the log stock price satisfies

〈logSn〉t = Xn
t = V0t +

(
Hn +

1

2

)
σ

∫ t

0

(t− s)Hn− 1
2WXns

ds

for Hn ∈ (− 1
2 , 1). From Lemma 2.4 in [AAR25],15 we formally expect that

lim
Hn↘− 1

2

(
Hn +

1

2

)
σ

∫ t

0

(t− s)Hn− 1
2WXns

ds = σWXt ,

where X is the weak limit of Xn, so we expect X to satisfy

Xt = V0t + σWXt . (E-1)

14see [JR20], Section 7 in [A21] and Section 5 in [FGS21] for more on this model.
15this lemma is particularly easy to check when f is a polynomial.
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Now let

Yt = −t+ σWt (E-2)

and set X̃t = H−V0t, where Hb = inf{t : Yt = b}. Then setting t 7→ X̃t in (E-2), we see that

−V0t = −X̃t + σWX̃t
(E-3)

i.e. X̃ satisfies the same equation as Xt in (E-1). Hence (using the notation/setup in Lemma 2.3 in [AAR25], i.e.

c = −V0, b = σ and a = −1), we deduce that X is an Inverse Gaussian Lévy process with parameters (V0,
V 2
0

σ2 ).

To analyze this process with VIEs, using that 1
Γ(α) = α + O(α2) as α → 0 (i.e. as H → − 1

2 ), we see that the

usual rough Heston VIE (with ρ = 0) takes the form

φ(t) =
1

Γ(α)

∫ t

0

(t− s)α−1
(
− 1

2
(u2 + iu) +

1

2
σ2φ(s)2

)
ds

= (1 +O(α))α

∫ t

0

(t− s)α−1
(
− 1

2
(u2 + iu) +

1

2
σ2φ(s)2

)
ds → −1

2
(u2 + iu) +

1

2
σ2φ(t)2

as α → 0 (again using Lemma 2.4 in [AAR25]), which is just an algebraic equation for φ. If we ignore the linear
term in u for simplicity (i.e. ignore the drift of the log stock price), then the (relevant) solution to this equation is
φ(t) = 1

σ2 (1−
√

1 + σ2u2), i.e. the smaller root as in the proof of Proposition 1.1.
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