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Abstract. This note studies an issue relating to essential smoothness that can arise when the theory

of large deviations is applied to a certain option pricing formula in the Heston model. The note

identifies a gap, based on this issue, in the proof of Corollary 2.4 in [2] and describes how to circumvent

it. This completes the proof of Corollary 2.4 in [2] and hence of the main result in [2], which describes

the limiting behaviour of the implied volatility smile in the Heston model far from maturity.

1. Introduction

In [2] the authors study the limiting behaviour of the implied volatility in the Heston model as

maturity tends to infinity. The main aim of this note is to give a rigorous account of the relationship

between the concept of essential smoothness and the large deviation principle for the family of random

variables (Xt/t± Eλ/t)t≥1, where the process X denotes the log-spot in Heston model (5) and Eλ is

an exponential random variable with parameter λ > 0 independent of X. This note fills a gap in the

proof of Corollary 2.4 in [2] and hence completes the proof of the main result in [2], which describes

the limiting behaviour of the implied volatility smile in the Heston model far from maturity.

The note is organized as follows. Section 2 describes the relevant concepts of the large deviation

theory and discusses how the effective domain changes when a family of random variables is perturbed

by an independent exponential random variable. Section 3 discusses the failure of essential smoothness

when the Heston model is perturbed by an independent exponential, which is what causes the gap in

the proof of Corollary 2.4 in [2]. Section 3 also proves Theorem 3, which fills the gap.

2. The large deviation principle for random variables in R

We briefly recall the basic facts of the large deviation theory in R (see monograph [1, Ch. 2] for

more details). Let (Zt)t≥1 be a family of random variables with Zt ∈ R. J is a rate function if it

is lower semicontinuous and J(R) ⊂ [0,∞] holds. The family (Zt)t≥1 satisfies the large deviation

principle (LDP) with the rate function J if for every Borel set B ⊂ R we have

(1) − inf
x∈B◦

J(x) ≤ lim inf
t→∞

1

t
logP [Zt ∈ B] ≤ lim sup

t→∞

1

t
logP [Zt ∈ B] ≤ − inf

x∈B
J(x),
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with the convention inf ∅ = ∞ the relative notions of interior (interior B◦, closure B and boundary

B \B◦ are in the topology of R).

The Gärtner-Ellis theorem (Theorem 1 below) gives sufficient conditions for a family (Zt)t≥1 to

satisfy the LDP (see monograph [1, Section 2.3] for details). Let Λt(u) := log E
[
euZt

]
∈ (−∞,∞] be

the cumulant generating function of Zt. Assume that for every u ∈ R

Λ(u) := lim
t→∞

Λt(tu)/t exists in [−∞,∞] and 0 ∈ D◦
Λ,(2)

where DΛ := {u ∈ R : Λ(u) < ∞} is the effective domain of Λ and D◦
Λ is its interior. The Fenchel-

Legendre transform Λ∗ of the convex function Λ is defined by the formula

Λ∗(x) := sup{ux− Λ(u) : u ∈ R} for x ∈ R.(3)

Under the assumption in (2), Λ∗ is lower semicontinuous with compact level sets {x : Λ∗(x) ≤ α}

(see [1, Lemma 2.3.9(a)]) and Λ∗(R) ⊂ [0,∞] and hence satisfies the definition of a good rate function.

We now state the Gärtner-Ellis theorem (see [1, Section 2.3] for its proof).

Theorem 1. Let the random variables (Zt)t≥1 satisfy the assumption in (2). If Λ is essentially smooth

and lower semicontinuous, then LDP holds for (Zt)t≥1 with the good rate function Λ∗.

The function Λ : R → (−∞,∞] defined in (2) is essentially smooth if it is (a) differentiable in

D◦
Λ and (b) steep, i.e. limn→∞ |Λ′(un)| = ∞ for every sequence (un)n∈N in D◦

Λ that converges to

a boundary point of D◦
Λ. If D◦

Λ is a strict subset of R, which is the case in the setting of [2] (see

also Section 3 below), essential smoothness, which plays a key role in the proof of Theorem 1, is not

automatic.

The following question is of central importance in [2]: does the LDP persist if a family of random

variables (Zt)t≥1 is perturbed by an independent exponential random variable E1? It is implicitly

assumed in the proof of Corollary 2.4 in [2] (see the last line on page 17 and lines 4 and 14 on page 18)

that if (Zt)t≥1 satisfies the assumptions of Theorem 1, then so do the families (Y 1+
t )t≥1 and (Y 1−

t )t≥1,

where Y 1±
t = Zt ± E1/t, and the LDP is applied. In particular the authors in [2] assume that the

limiting cumulant generating functions of (Y 1±
t )t≥1 are essentially smooth. However the following

simple lemma holds.

Lemma 2. Let (Zt)t≥1 satisfy the assumption in (2) with a limiting cumulant generating function Λ.

Let λ > 0 and Eλ an exponential random variable independent of (Zt)t≥1 with E[Eλ] = 1/λ and let

Y λ±
t := Zt ±Eλ/t. Then the families of random variables (Y λ±

t )t≥1 satisfy the assumption in (2) and

the corresponding limiting cumulant generating functions are given by

Λλ+(u) =

{
Λ(u), if u ∈ DΛ ∩ (−∞, λ),

∞, otherwise,
and Λλ−(u) =

{
Λ(u), if u ∈ DΛ ∩ (−λ,∞),

∞, otherwise.
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Remarks. (a) Let (Zt)t≥1 satisfy the assumption in (2) and assume further that Λ is differentiable in

D◦
Λ. If 1 ∈ D◦

Λ, then the right-hand boundary point of the interior of the effective domain D◦
Λ1+ is

equal to 1 and Lemma 2 implies that the limiting cumulant generating function Λ1+ of (Y 1+
t )t≥1 is

• neither essentially smooth, since Λ1+ is not steep at 1,

• nor lower semicontinuous at 1, since it is differentiable in D◦
Λ1+ with Λ1+(1) = ∞.

Loss of steepness and lower semicontinuity occurs also for (Y 1−
t )t≥1 in the case where −1 ∈ D◦

Λ.

(b) Lemma 2 implies that if (Zt)t≥1 satisfies the assumptions of Theorem 1 and DΛ is contained in

(−∞, λ), for some λ > 0, then (Y λ+
t )t≥1 also satisfies the assumptions of Theorem 1 and hence the

LDP with a good rate function Λ∗. An analogous statement holds for (Y λ−
t )t≥1.

Proof. Note that log E
[
euEλ

]
is finite and equal to log (λ/(λ− u)) if and only if u ∈ (−∞, λ). For all

large t and u ∈ DΛ ∩ (−∞, λ), the assumption in (2) implies that Λλ+
t (tu) = log E

[
exp

(
tuY λ+

t

)]
is

finite and that the formula holds

Λλ+
t (tu) = Λt(tu) + log

λ

λ− u
, where Λt(tu) = log E [exp (tuZt)] .(4)

The inequality u ≥ λ implies that, since Λt(tu) > −∞, we have Λλ+
t (tu) = ∞ for all t and hence

Λλ+(u) = ∞. If u ∈ (R \ DΛ) ∩ (−∞, λ), then (4) yields Λλ+(u) = limtր∞ Λλ+
t (tu)/t = ∞. This

proves the lemma for (Y λ+
t )t≥1. The case of (Y λ−

t )t≥1 is analogous. �

3. Essential smoothness can fail

The Heston model S = eX is a stochastic volatility model with the log-stock process X given by

dXt = −
Yt
2
dt+

√
YtdW

1
t and dYt = κ(θ − Yt)dt+ σ

√
YtdW

2
t ,(5)

where κ, θ, σ > 0, Y0 = y0 > 0, X0 = x0 ∈ R and W 1,W 2 are standard Brownian motions with

correlation ρ ∈ (−1, 1). The standing assumption

ρσ − κ < 0,(6)

is made in [2] (see equation (2.2) in Theorem 2.1 on page 5 of [2]). In particular the inequality in (6)

implies that S is a strictly positive true martingale and allows the definition of the share measure P̃

via the Radon-Nikodym derivative dP̃/dP = eXt−x0 .

The authors’ aim in [2] is to obtain the limiting implied volatility smile as maturity tends to

infinity at the strike K = S0e
xt for any x ∈ R in the Heston model. Their main formula is given in

Corollary 3.1 of [2]. A key step in the proof of [2, Corollary 3.1] is given by [2, Corollary 2.4]. In

the proof of [2, Corollary 2.4] (see last line on page 17 and lines 4 and 14 on page 18) it is implicitly

assumed that the LDP for (Xt/tt≥1 implies the LDP for the family (Xt/t ± E1/t)t≥1. However, as

we have seen in Section 2 (see remarks following Lemma 2), Theorem 1 cannot be applied directly
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to the family (Xt/t ± E1/t)t≥1, even if (Xt/t)t≥1 satisfies its assumptions. We start with a precise

description of the problem and present the solution in Theorem 3.

Remarks. (i) Under (6), a simple calculation implies that Λ and DΛ of the family (Xt/t)t≥1 are:

Λ(u) = −
θκ

σ2

(
uρσ − κ+

√
∆(u)

)
for u ∈ DΛ and DΛ = [u−, u+] where(7)

u± =
(
1/2− ρκ/σ ±

√
(κ/σ − ρ)κ/σ + 1/4

)
/
(
1− ρ2

)
with u− < 0 < 1 < u+.(8)

In (7) the function ∆ is a quadratic ∆(u) = (uρσ − κ)2 − σ2(u2 − u) and the boundary points u+

and u− of the effective domain DΛ are its zeros. Elementary calculations show that Λ is essentially

smooth and that the unique minimum of Λ∗ is attained at Λ′(0) = −θ/2. Therefore (Xt/t)t≥1 satisfies

the LDP with the good rate function Λ∗, defined in (3), by Theorem 1.

(ii) Under the share measure P̃, given by dP̃/dP = eXt−x0 , we have Ẽ
[
euXt

]
= e−x0E

[
e(u+1)Xt

]
for

all u ∈ R and t > 0 and hence the family (Xt/t)t≥1 under P̃ satisfies the assumption in (2) with

the limiting cumulant generating function Λ̃(u) = Λ(u + 1), D
Λ̃

= [u− − 1, u+ − 1]. As before,

(Xt/t)t≥1 satisfies the LDP under P̃ with the strictly convex good rate function Λ̃, which satisfies

Λ̃∗(x) = Λ∗(x)− x for all x ∈ R and attains its unique minimum at Λ̃′(0) = Λ′(1) = θκ/(κ− ρσ).

Theorem 3. Let the process X be given by (5) and assume that (6) holds. Let E1 be the exponential

random variable with E[E1] = 1, which is independent of X. Then the following limits hold:

lim
tր∞

1

t
logP [Xt − x0 + E1 < xt] = −Λ∗(x) for x ≤ Λ′(0) = −θ/2;(9)

lim
tր∞

1

t
log P̃ [Xt − x0 − E1 > xt] = x− Λ∗(x) for x ≥ Λ′(1) = θκ/(κ− ρσ);(10)

lim
tր∞

1

t
log P̃ [Xt − x0 − E1 ≤ xt] = x− Λ∗(x) for x ∈

[
Λ′(0),Λ′(1)

]
;(11)

where Λ is given in (7), its Fenchel-Legendre transform Λ∗ is defined in (3) and dP̃/dP = eXt−x0.

Remark. The limits in Theorem 3 are precisely the limits that arise in the proof of [2, Corollary 2.4]

(see the last line on page 17 and lines 4 and 14 on page 18) and are claimed to hold since the family

(Xt/t)t≥1 satisfies the LDP under P and P̃ by Remarks (i) and (ii) above and Theorem 1. However

Lemma 2 implies that the limiting cumulant generating function Λ1+ of the family of random variables

(Zt+E1/t)t≥1, where Zt = (Xt−x0)/t, is neither lower semicontinuous nor essentially smooth. Hence

Theorem 1 cannot be applied to (Zt + E1/t)t≥1. An anologous issue arises under the measure P̃.

Proof. The basic idea of the proof is simple: for (9) we sandwich the probability P [Xt − x0 + E1 < xt]

between two tail probabilities of two families of random variables, which satisfy the LDP with the

same rate function Λ∗ by Lemma 2 and Theorem 1. The limits in (10) and (11) follow similarly.
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For given parameter values in the Heston model pick λ > u+, where u+ is defined in (8). Let Eλ

be an exponential random variable with E[Eλ] = 1/λ, defined on the same probability space as X and

E1 and independent of both. Since u+ > 1, we have the elementary inequality

P [Eλ < α] = I{α>0}

(
1− e−λα

)
≤ I{α>0}

(
1− e−α

)
= P [E1 < α] for any α ∈ R.(12)

The inequality

P [Xt − x0 + Eλ < xt] ≤ P [Xt − x0 + E1 < xt](13)

follows by conditioning on Xt and applying (12). On the other hand, since E1 > 0 a.s., we have

P [Xt − x0 + E1 < xt] ≤ P [Xt − x0 < xt] .(14)

Lemma 2 implies that the families of random variables (Zt + Eλ/t)t≥1 and (Zt)t≥1, where Zt =

(Xt − x0)/t, both have the limiting cumulant generating function equal to Λ given in (7) with the

effective domain DΛ = [u−, u+]. Since Λ is essentially smooth and lower semicontinuous on DΛ and

the assumption in (2) is satisfied, Theorem 1 implies that (Zt+Eλ/t)t≥1 and (Zt)t≥1, satisfy the LDP

with the good rate function Λ∗. Since x in (9) is assumed to be less or equal to the unique minimum

Λ′(0) = −θ/2 of Λ∗ (see Remark (i) above) and Λ∗ is non-negative and strictly convex, the LDP (see

the inequalities in (1)) and the inequalities in (13) and (14) imply the limit in (9).

To prove (10) pick λ > 1− u− and note that the inequality in (12) and conditioning on Xt yield

P̃ [Xt − x0 > xt] ≥ P̃ [Xt − x0 − E1 > xt] ≥ P̃ [Xt − x0 − Eλ > xt] .(15)

As before, Lemma 2 and Theorem 1 imply that (Zt − Eλ/t)t≥1 and (Zt)t≥1 satisfy the LDP with

the convex rate function Λ̃∗, which by Remark (ii) above attains its unique minimum at Λ′(1) =

θκ/(κ − ρσ). Since x ≥ Λ′(1) in (10), the limit follows. A similar argument implies the limit in (11)

for all x ∈ [Λ′(0),Λ′(1)], which concludes the proof. �
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