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Abstract. We characterise the asymptotic smile and term structure of implied volatility in the Heston model

at small maturities. Using saddlepoint methods we derive a small-maturity expansion formula for call option

prices, which we then transform into a closed-form expansion (including the leading-order and correction terms)

for implied volatility. This refined expansion reveals the relationship between the small-expiry smile and all

Heston parameters (including the pair in the volatility drift coefficient), sharpening the leading-order result

of [Forde, Jacquier, ‘Small-time asymptotics for implied volatility under the Heston model’, IJTAF, 12(6): 861-

876, 2009] which found the relationship between the zero-expiry smile and the diffusion coefficients.

1. Introduction

Stochastic models are used extensively by traders and quantitative analysts in order to price and hedge

financial products. Once a model has been chosen for its realistic features, one has to calibrate it. This

calibration must be robust and stable and should not be too computer intensive. This latter constraint often

rules out global optimisation algorithms which are very slow despite their accuracy. For this reason closed-form

asymptotic approximations have grown rapidly in the past few years. They have proved to be very efficient

(i) to provide some information about the behaviour of option prices in some extreme regions such as small or

large strikes or maturities (where standard numerical schemes lose their accuracy), (ii) to improve calibration

efficiency. Indeed one can first perform an instantaneous calibration on the closed-form and then use this

result as a starting point to calibrate the whole model. In practice calibration is often performed using the

implied volatility—i.e. the volatility parameter to be used in the Black-Scholes formula in order to match the

observed market price—rather than option prices.

For these reasons, there has recently been an explosion of literature on small-time asymptotics for stochastic

volatility and exponential Lévy models (see [3], [7], [8], [9], [10], [14], [15], [16], [24] and [22]). All these articles

characterise the behaviour of the Black-Scholes implied volatility for European options in the small-maturity

limit. Varadhan ([28], [29]) and Freidlin & Wentzell [13] initiated the study of large deviations for strong

solutions of stochastic differential equations, and showed that on a logarithmic scale the small-time behaviour

of such a diffusion process can be characterised in terms of a distance function on a Riemannian manifold,

whose metric is equal to the inverse of the diffusion coefficient. Higher-order expansions in powers of the small

time parameter have extended these seminal works. Molchanov [21] provided a rigorous probabilistic proof

of this heat kernel expansion at leading order, and Bellaiche [2] improved this expansion for non-compact

manifolds under mild technical conditions.
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In mathematical finance, Henry-Labordère [16] was the first to introduce heat kernel methods to study

asymptotics of the implied volatility, both for local and for stochastic volatility models, and initiated a stream

of research in this area. For one-dimensional local volatility models Gatheral et al. [14] provided a rigorous

proof of the small-time expansion—up to second-order in the maturity—for the transition density and for the

implied volatility. On the analytic side, Berestycki et al. [3] showed that for a stochastic volatility model with

coefficients satisfying certain growth conditions, the small-maturity implied volatility is given by a distance

function obtained as the unique viscosity solution to a non-linear eikonal first-order Hamilton-Jacobi PDE.

Paulot [24] derived a small-time expansion for call options under a general local-stochastic volatility model

(including the SABR model) by applying the Laplace method to integrate the heat kernel over the range of

the volatility variable. It is interesting to note that the small-maturity at-the-money implied volatility has a

qualitatively different behaviour than the rest of the smile and cannot be dealt with in the same way.

This heat kernel asymptotic approach however does not apply to the Heston model (2.1) where the variance

process follows a square-root diffusion, since the associated Riemannian manifold is not complete (see [16,

Chapter 6] for more details about this phenomenon). Using the affine properties of the Heston model, Forde

and Jacquier [9] developed a large deviations approach to obtain the small-time behaviour of the implied

volatility (the large-maturity case is treated in [11] by analogous arguments, and we refer the interested reader

to [25] for a detailed review). In this paper we refine this analysis by providing the first-order correction of the

small-maturity expansion for the implied volatility in this model. The methodology in use here—similar to

the one used in [12] for the large-maturity case—is based on saddlepoint expansions in the complex plane and

the properties of holomorphic functions. We first derive an asymptotic expansion for European call options,

which we then translate into implied volatility asymptotics. Namely for a European option written on the

underlying (St)t≥0 with strike S0e
x, we prove that the expansion

σ2
t (x) = σ2

0 (x) + a (x) t+ o (t)

holds for any non-zero real number x for the implied volatility σt as the maturity t tends to zero (Theorem 4.2).

The correction term a(x) is important since it takes into account the drift terms in the SDEs (2.1) for the

Heston model. The genuine limit σ0(x) (also derived in [9]) fails to capture these drifts because large deviations

theory is only sharp on a logarithmic scale.

The paper is organised as follows: we recall the Heston model and the main ingredients that will be needed

in Section 2. Section 3 presents the main results of the paper, namely the small-maturity asymptotic expansion

for European call option prices, both for the Heston and for the Black-Scholes model. The lengthy proof of

the main theorem is deferred to Section 6. In Section 4 we translate these expansions into implied volatility

asymptotics and provide numerical evidence of the accuracy of our formulae. Finally we propose a calibration

methodology based on these closed-form approximations in Section 5.

2. Model and notations

We work on a probability space (Ω,F , P ) with a filtration (Ft)t≥0 supporting two Brownian motions and

satisfying the usual conditions. Let (St)t≥0 be a stock price process and we denote its logarithm by Xt :=

log(St). Without loss of generality we shall assume that interest rates and dividends are null—otherwise we

can just model the dynamics of the forward price directly instead of the stock price. In the Heston model the
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process (Xt)t≥0 satisfies the following system of SDEs:

(2.1)

dXt = −1

2
Yt dt+

√
Yt dWt, X0 = x0 ∈ R,

dYt = κ (θ − Yt) dt+ σ
√

Yt dZt, Y0 = y0 > 0,

d⟨W,Z⟩t = ρdt

where κ > 0, θ > 0, σ > 0, |ρ| < 1 and W and Z are two standard Brownian motions. We further assume

as in [19] that the inequality κ > ρσ holds. This will be needed in Section 6.2 to characterise the effective

domain of the moment generating function; without this condition, the variance process fails to be mean-

reverting under the Share measure. This assumption is however not restrictive in practice since the correlation

is usually either negative (in equity markets) or close to zero (implied volatility smiles are almost symmetric in

foreign exchange markets). The Y process is a Feller diffusion and the coefficients of the stochastic differential

equation satisfy the Yamada-Watanabe condition [17, Section 5.2.C, Proposition 2.13] so it admits a unique

strong solution. The X process is a stochastic integral of the Y process and thus is well defined. Let us now

define the two real numbers p− < 0 and p+ > 0 by

p− :=
2

σρ̄
arctan

(
ρ̄

ρ

)
11{ρ<0} −

π

σ
11{ρ=0} +

2

σρ̄

(
arctan

(
ρ̄

ρ

)
− π

)
11{ρ>0},

(2.2)

p+ :=
2

σρ̄

(
arctan

(
ρ̄

ρ

)
+ π

)
11{ρ<0} +

π

σ
11{ρ=0} +

2

σρ̄
arctan

(
ρ̄

ρ

)
11{ρ>0},

where ρ̄ :=
√

1− ρ2. We further define the function Λ : (p−, p+) → R by

(2.3) Λ(p) :=
y0p

σ (ρ̄ cot (σρ̄p/2)− ρ)
, for all p ∈ (p−, p+) .

It can easily be checked that Λ is a real strictly convex function on the interior of its domain, and that Λ(p) > 0

for all p ∈ (p−, p+) \ {0}, and Λ(0) = 0.

Remark 2.1. In [9] the authors proved that the function Λ corresponds to the limiting cumulant generating

function of the Heston model, i.e.

Λ (p) = lim
t→0

t logE
(
ep(Xt−x0)/t

)
, for all p ∈ (p−, p+) .

Let us finally define the Fenchel-Legendre transform Λ∗ : R → R of the function Λ by

(2.4) Λ∗ (x) := sup
p∈(p−,p+)

{px− Λ (p)} , for all x ∈ R.

In [9] the authors proved that the small-maturity limit of the implied volatility is fully characterised by this dual

transform. We shall of course recover this result while proving higher-order expansions for the short-maturity

implied volatility. The function Λ∗ does not admit a closed-form representation, but a straightforward analysis

shows that the equality Λ∗ (x) = p∗ (x)x − Λ (p∗ (x)) holds for any real number x where p∗ (x) ∈ (p−, p+) is

defined as the unique solution to the equation Λ′ (p∗ (x)) = x. By strict convexity and the fact that |Λ′(p)|
tends to infinity whenever p tends to p− or p+, this number is always uniquely well defined. As proved in [9],

the identities p∗ (x) > 0 for x > 0, p∗ (x) < 0 for x < 0 and p∗ (0) = 0 always hold. We also have Λ∗(x) > 0

and Λ′′(p∗(x)) > 0 for all x ̸= 0, and Λ∗(0) = 0.

In the Black-Scholes model, the share price process (St)t≥0 satisfies the SDE dSt = ΣStdWt, with S0 > 0

and where the volatility Σ is a strictly positive real number. We shall use the notation CBS (x, t,Σ) to represent
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the Black-Scholes price of a European call option written on the share price S with strike S0e
x, maturity t

and volatility Σ. In the rest of the paper, ℜ and ℑ will respectively denote the real and the imaginary parts

of a complex number, and N the cumulative distribution function of the standard Gaussian distribution.

3. Small-time behaviour of European call options

In this section we derive small-time expansions for European call option prices in the Heston model (Theo-

rem 3.1) and in the Black-Scholes model (Proposition 3.4). We postpone the proof of Theorem 3.1 to Section 6.

Theorem 3.1. In the Heston model (2.1) the asymptotic behaviour for European call options

E
(
eXt − S0e

x
)
+

S0
= (1− ex)+ + exp

(
−Λ∗ (x)

t

)(
A(x)√
2π

t3/2 +O
(
t5/2

))
,

holds for any x ∈ R \ {0} as the maturity t tends to zero, where

A(x) :=
exU (p∗(x))

p∗(x)2
√

Λ′′ (p∗(x))
,

U (p) := exp

(
κθ

σ2

(
(iρσ − d0) ip− 2 log

(
1− g0e

−id0p

1− g0

)))
exp

(
y0e

−id0p

(1− g0e−id0p)σ2

(
(iρσ − d0) ipd1 − (κ− d1)

(
1− eid0p

)
+

(iρσ − d0)
(
1− e−id0p

)
(g1 − id1g0p)

1− g0e−id0p

))
,

where the functions Λ and Λ∗ are defined in (2.3) and in (2.4), and

(3.1) d0 := σρ̄, d1 :=
2κρ− σ

2ρ̄
i, g0 :=

iρ− ρ̄

iρ+ ρ̄
, g1 :=

(2κ− ρσ)

σρ̄ (iρ+ ρ̄)
2 .

Remark 3.2. Although this is not obvious from its representation, the function U maps the interval (p−, p+)

to the real line. The reason for this is explained in Remark 6.2. Since p∗(x) takes values in (p−, p+) \ {0}, and
Λ′′ (p∗(x)) > 0 for all x ∈ R∗, then A(x) is a well-defined real number.

Remark 3.3. Note that the theorem does not deal with the at-the-money case x = 0. We refer the interested

reader to Remark 6.10 for further details about this case.

Since we shall eventually be interested in deriving small-time asymptotics for the implied volatility, we

need an analogous result to Theorem 3.1 for the Black-Scholes model. This is the purpose of the following

proposition, the proof of which can be found in Appendix 7.1.

Proposition 3.4. Let Σ > 0, c ∈ R, define σt :=
√
Σ2 + ct for t > 0 and assume that t ∈

(
0,Σ2/|c|

)
if c < 0.

Then the following behaviour holds as the maturity t tends to zero,

CBS (x, t, σt)

S0
=


(1− ex)+ + exp

(
− x2

2Σ2t
+

x

2
+

cx2

2Σ4

)(
Σ3

x2
√
2π

t3/2 +O
(
t5/2

))
, if x ̸= 0,

Σ√
2π

t1/2 +
1

2Σ
√
2π

(
c

Σ
− Σ4

12

)
t3/2 +O

(
t5/2

)
, if x = 0.

The behaviour of European call options in the standard Black-Scholes model follows immediately.
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Corollary 3.5. In the standard Black-Scholes model (i.e. c = 0) we have σt = Σ for all t > 0 and

CBS (x, t,Σ)

S0
=


(1− ex)+ + exp

(
− x2

2Σ2t

)(
ABS(x,Σ)√

2π
t3/2 +O

(
t5/2

))
, if x ̸= 0,

Σ√
2π

t1/2 − Σ3

24
√
2π

t3/2 +O
(
t5/2

)
, if x = 0,

where

(3.2) ABS (x,Σ) :=
Σ3

x2
exp

(x
2

)
, for any x ̸= 0.

4. Small-time behaviour of implied volatility

In this section we translate the call option asymptotics stated above into small-time expansions for the

implied volatility. For any t > 0 and x ∈ R∗, σt(x) shall denote the implied volatility of a European call option

with maturity t and strike S0e
x. We first define the two functions σ0 : R → R and a : R → R by

(4.1) σ0(x) :=
|x|√

2Λ∗ (x)
and a(x) :=

2σ4
0 (x)

x2
log

(
A (x)

ABS (x, σ0 (x))

)
, for all x ∈ R \ {0},

where the functions Λ∗, A and ABS are respectively defined in (2.4), in Theorem 3.1 and in (3.2). These two

functions clearly exist for all x ∈ R \ {0}, and Corollary 4.3 below ensures that σ0(0) and a(0) are well defined

by continuity.

Remark 4.1. In [9], the authors proved that the function σ0 is the genuine limit of the implied volatility

smile as the maturity tends to zero and that it is continuous at the origin. Although the two functions A and

ABS are not continuous at the origin, the function a is, as shown below in Corollary 4.3.

The following theorem is the core of this section and gives the out-of-the-money implied volatility expansion

for small maturities. We defer its proof to Section 7.2.

Theorem 4.2. The asymptotic expansion σ2
t (x) = σ2

0(x) + a(x)t+ o(t) holds for all x ∈ R\{0}.

The following corollary—proved in Section 7.3—is a direct consequence of this theorem and provides infor-

mation on the behaviour of the short-time implied volatility near the money in terms of the model parameters.

It also highlights the moneyness dependence of the coefficients σ0 and a near the money.

Corollary 4.3. The following expansions for the functions σ0 and a hold when x is close to zero,

σ0(x) =
√
y0

(
1 +

ρσx

4y0
+

1

24

(
1− 5ρ2

2

)
σ2x2

y20

)
+O

(
x3
)
,

a(x) = −σ2

12

(
1− ρ2

4

)
+

y0ρσ

4
+

κ

2
(θ − y0) +

ρσ

24y0

(
σ2ρ̄2 − 2κ (θ + y0) + y0ρσ

)
x

+
176σ2 − 480κθ − 712ρ2σ2 + 521ρ4σ2 + 40y0ρ

3σ + 1040κθρ2 − 80y0κρ
2

7680

σ2x2

y20
+O

(
x3
)
.

These approximations for the functions σ0 and a are symmetric in the log-moneyness when the correlation

parameter ρ is null. This is consistent with the fact that uncorrelated stochastic volatility models generate

symmetric smiles (see [26]). In the at-the-money case, we have the following corollary:

Corollary 4.4. If there exists some ε > 0 such that the map (t, x) 7→ σ2
t (x) is of class C

1,1 on [0, ε)× (−ε, ε),

then σ2
t (0) = σ2

0(0) + a(0)t+ o(t).
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Proof. Define the function f by f(t, x) := σ2
t (x). Applying Taylor’s theorem twice we obtain

f(t, 0)− f(0, 0) = t
∂f

∂t
(0, 0) + o(t) = t lim

x→0

∂f

∂t
(0, x) + o(t) = lim

x→0
a(x)t+ o(t) = a(0)t+ o(t).

�

The following corollary explains why the correction term a(x) is important.

Corollary 4.5. The following small-time approximation for call options holds as t tends to zero:

E
(
eXt − S0e

x
)
+
∼ CBS

(
x, t,

√
σ2
0(x) + a(x)t

)
, for all x > 0,

where ∼ denotes asymptotic equivalence: f(t) ∼ g(t) means f(t)/g(t) converges to one as as t tends to zero.

When x < 0, it is clear from Theorem 3.1 and Proposition 3.4 that the leading orders (1− ex)+ = (1− ex)

dominate, so that E
(
eXt − S0e

x
)
+

∼ CBS (x, t, σ0(x)) holds. When x > 0, the leading orders (1 − ex)+ are

zero, and the corollary follows from Theorem 3.1, Proposition 3.4 and (4.1):

lim
t→0

E
(
eXt − S0e

x
)
+

CBS

(
x, t,

√
σ0(x)2 + a(x)t

) =
A(x)x2

σ3
0(x)

exp

(
−x

2
− a(x)x2

2σ4
0(x)

)
= 1.

The necessity of the correction term a(x) when x > 0 can be understood by the following limit ratio:

lim
t→0

CBS

(
x, t,

√
σ0(x)2 + a(x)t

)
CBS (x, t, σ0(x))

= exp

(
a(x)x2

2σ4
0(x)

)
,

which is clearly not independent of the correction term—and in particular is not equal to 1 unless a(x) = 0.

We now test the accuracy of the small-time expansion for the implied volatility derived in Theorem 4.2.

Example 4.6. Let us consider the following set of parameters: κ = 1.15, σ = 0.2, θ = y0 = 0.04 and ρ = −0.4.

In Figure 1, we plot the smiles computed numerically1 as well as the zeroth and the first order approximations

(i.e. σ0(x) and
√
σ2
0(x) + a(x)t as given in (4.1)) for the three maturities t = 0.1 year, t = 0.25 year and

t = 0.5 year. We observe that our approximation and the generated data are very close for the maturities

t = 0.1 and t = 0.25, and are still close (within 0.18 percentage points uniformly in the displayed strikes) even

at t = 0.5, an expiry approaching moderate size. The correction term a(x) is essentially the smile-flattening

effect which is a stylised feature of implied volatility surfaces observed in the market. It is interesting to note

that the error between our refined expansion and the true value of the Heston smile is almost constant over

all strikes. We also plot in Figure 2 the correction term a(x) given by the formula in (4.1).

5. Calibration methodology

Based on the asymptotic expansion derived in Theorem 4.2 above, we find a calibration formula that

generates parameter estimates, which can then serve as starting points to be input into a standard numerical

optimiser. For the sake of clarity in this section we introduce the notation α := κθ. Given implied variances

for five contracts, our objective is to find explicit formulae to calibrate the five Heston parameters (v, σ, ρ, α, κ)

to the five implied variances. For some configurations of contracts, one cannot expect to solve this problem.

For example, a set of contracts with the same expiry would be uninformative in regard to the term structure

1 The implementation is based on a refined quadrature scheme for inverse Fourier transforms using the Zeliade Quant Frame-

work by Zeliade Systems, where the second author was working.
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(a) Implied volatility, matu-

rity: 0.1

(b) Implied volatility, matu-

rity: 0.25

(c) Implied volatility, matu-

rity: 0.5

(d) Errors, maturity: 0.1 (e) Errors, maturity: 0.25 (f) Errors, maturity: 0.5

Figure 1. The three graphs on top represent the implied volatilities for different maturities.

The three graphs below represent the corresponding errors (difference between our formula

and the true implied volatility) for the same maturities. The solid blue line corresponds to the

leading-order smile σ0(x), the solid grey one is the refined formula
√
σ2
0(x) + a(x)t, and the

blue crosses account for the true Heston implied volatilities. The horizontal axis represents

the log-moneyness x.

Figure 2. Plot of the correction term a(x) defined in (4.1).
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of implied variance, hence uninformative in regard to the mean-reversion parameter κ. We therefore choose

configurations which involve multiple expiries. In such a setting our maturity-dependent formula plays a

crucial role in capturing the maturity effects needed to calibrate the full set of Heston parameters. Recall that

Theorem 4.2 and Corollary 4.3 imply σ2
t (x) = H (x, t) +O

(
x3
)
+ o (t) , as x and t tend to zero, where

H(x, t) := H(x, t; y0, ρ, σ, α, κ) := y0

(
1 +

ρ

2

σx

y0
+

(
1− 7

4
ρ2
)

σ2x2

12y20

)
+

((
ρσy0
2

− σ2

6

(
1− 1

4
ρ2
)
+ α− κy0

)
+

ρσ

12y0

(
σ2
(
1− ρ2

)
+ ρσy0 − 2α− 2κy0

)
x

)
t

2
(5.1)

+
σ2

7680y20

( (
176− 712ρ2 + 521ρ4

)
σ2 + 40σρ3y0 + 80

(
13ρ2 − 6

)
α− 80κρ2y0

)
x2t.

Let us consider a “skew” V : K → R, where each point in the configuration K ⊂ R× [0,∞] represents a (log

moneyness, expiration), and where V represents the squared implied volatility. We shall say that (v, ρ, σ, α, κ)

calibrates H to the skew V : K → R if the equality H (x, t; y0, ρ, σ, α, κ) = V(x, t) holds for all (x, t) ∈ K.

This definition demands exact fitting of H to the given volatility skew at all points in K. Consider now

the configuration K = {(0, 0), (x0, t1), (−x0, t1), (x0, t2), (−x0, t2)} where 0 < t1 < t2 and x0 > 0. Given

V : K → R, define

V0 := V(0, 0), S :=
V+ − V−

2x0
, C :=

V+ − 2V0 + V−

2x2
0

,

V± :=
t2

t2 − t1
V (±x0, t1)−

t1
t2 − t1

V (±x0, t2) .

Theorem 5.1. The parameter choices (ỹ0, ρ̃, σ̃, α̃, κ̃) calibrate H to the skew V : K → R, where
ỹ0

σ̃

ρ̃

 :=


V0√

7S2 + 12V0C

2S/
√
7S2 + 12V0C

 ,(5.2)

(
α̃

κ̃

)
:= M−1(q− r),(5.3)

with

q :=
1

2t1

(
V(x0, t1)− V(−x0, t1)− V+ + V−

V(x0, t1) + V(−x0, t1)− V+ − V−

)
,

and

r :=


ρ̃σ̃3

(
1− ρ̃2

)
+ ỹ0ρ̃

2σ̃2

24ỹ0
x0

12ỹ0ρ̃σ̃ +
(
ρ̃2 − 4

)
σ̃2

48
+

(176− 712ρ̃2 + 521ρ̃4)σ̃4 + 40ỹ0ρ̃
3σ̃3

7680ỹ20
x2
0

 ,

and

M :=


− ρ̃σ̃

12ỹ0
x0 − ρ̃σ̃

12
x0

1

2
+

(13ρ̃2 − 6)σ̃2

96ỹ20
x2
0 − ỹ0

2
− ρ̃2σ̃2

96ỹ0
x2
0

 ,

provided that ỹ0 ̸= 0, ρ̃ ̸= 0 and ρ̃2 ̸= 3
7

(
1− 16ỹ20/

(
x2
0σ̃

2
))
.
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This theorem follows immediately by substituting (5.2), (5.3), and each (x, t) ∈ K, into (5.1). The following

provides a simple numerical example based on the implied volatility smiles in Figure 1.

Example 5.2. Suppose that the true Heston parameters are the ones that generate Figure 1. Let t1 := 0.1,

t2 := 0.25, and x0 := 0.1. Then the squared implied volatilities are

V(0, 0) = 0.04,V(x0, t1) = 0.03644,V(−x0, t1) = 0.04395,V(x0, t2) = 0.03610,V(−x0, t2) = 0.04325.

Given these data points, the explicit calibration formulae in Theorem 5.1 produce the estimates

θ̃ := α̃/κ̃ = 0.04105, κ̃ = 1.104, ρ̃ = −0.4069, σ̃ = 0.1907

of the true parameters (θ, κ, ρ, σ) = (0.04, 1.15,−0.4, 0.2).

6. Proof of the call price expansion (Theorem 3.1)

We split the proof of Theorem 3.1 into several parts, from Section 6.1 to Section 6.3 below. From [20],

we know that European call option prices can be written as an inverse Fourier transform (6.1) along some

horizontal contour in the complex plane. We then rescale this integral (subsection 6.2) and move the horizontal

contour of integration so it passes through the saddlepoint (see Definition 6.6) of the small-time approximation

of the integrand (Lemma 6.1). In Proposition 6.9 we prove an asymptotic expansion of the integral in (6.2).

Lemma 6.4 is a technical lemma needed to justify this saddlepoint expansion. In the whole proof—according

to the statement of Theorem 3.1—we assume that x ̸= 0.

6.1. The Fourier inversion formula for call options. For each non-negative real number t, define the sets

At,X ⊂ R and Λt,X ⊂ C by

At,X := {ν ∈ R : E (exp (ν(Xt − x0))) < ∞} , Λt,X := {z ∈ C : −ℑ(z) ∈ At,X} ,

and the characteristic function ϕt : C → C of the logarithmic return (Xt − x0)t≥0 by

ϕt(z) := E
(
eiz(Xt−x0)

)
, for all z ∈ Λt,X .

By [20, Theorem 5.1], we know that for any α ∈ R such that α + 1 ∈ At,X and α ̸= 0, we have the following

Fourier inversion formula for the price of a call option

E
(
eXt − S0e

x
)
+

S0
= ϕt (−i) 11{−1<α<0} +

(
ϕt (−i)− exϕt (0)

)
11{α<−1} +

(
ϕt (−i)−

ex

2
ϕt (0)

)
11{α=−1}

+
1

π

∫ +∞−iα

0−iα

ℜ
(
e−izxϕt (z − i)

iz − z2

)
dz.(6.1)

The first three terms on the right-hand side are complex residues that arise when we cross the pole of(
iz − z2

)−1
at z = 0 and at z = i. Setting u = i − z and using the fact that the process

(
eXt
)
t≥0

is a

true martingale (see [19, Theorem 2.5]) we obtain

E
(
eXt − S0e

x
)
+

S0
= 11{−1<α<0} + (1− ex) 11{α<−1} +

(
1− ex

2

)
11{α=−1}

+
ex

π

∫ +∞+i(α+1)

0+i(α+1)

ℜ
(
eiux

ϕt (−u)

iu− u2

)
du.(6.2)
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6.2. Rescaling the variable of integration. In this subsection, we first rescale the integrand above in order

to perform an asymptotic expansion, and we then deform the contour of integration along a line in the complex

plane that passes through the point ip∗(x), where p∗(x) is defined on Page 3. The reason for such a choice

will be made clear in Lemma 6.7. As proved in [9], since p∗(x) ∈ (p−, p+) for any real number x (see Page 3),

then the change of variable u =: k/t together with α+ 1 = p∗ (x) /t in (6.2) is valid, and hence the equality

(6.3)
1

S0
E
(
eXt − S0e

x
)
+
= (1− ex) 11{x<0} +

ex

π
ℜ

(∫ +∞+ip∗(x)

0+ip∗(x)

exp

(
ixk

t

)
ϕt (−k/t)

ik/t− k2/t2
dk

t

)
holds for t sufficiently small. Indeed, from (6.2), the set {−1 < α < 0} is equivalent to the set {0 < p∗(x) < t},
the set {α < −1} is equal to the set {p∗(x) < 0}, and the set {α = −1} corresponds to the set {p∗(x) = 0}.
Since we consider t sufficiently small and x ̸= 0, only the second set remains, and the properties of the function

p∗ on Page 3 imply (6.3). The first residue term corresponds to the intrinsic value of the call option. For

k ̸= 0, we have t−1
(
ik/t− k2/t2

)−1
= −

(
t/k2

)
(1 +O (t/k)) = −

(
t/k2

)
(1 +O (t)) uniformly in k, therefore

we can rewrite (6.3) as

E
(
eXt − S0e

x
)
+

S0
= (1− ex) 11{x<0} − t

ex

π
ℜ

(∫ +∞+ip∗(x)

ip∗(x)

exp

(
ixk

t

)
ϕt (−k/t)

k2
(1 +O (t)) dk

)
.

Let us now define, for each p ∈ R the explosion time t∗(p) := sup{t > 0,E
(
ep(Xt−x0)

)
< ∞}. In [9], using [19]

(which applies since κ > ρσ), the authors proved that for any p ∈ (p−, p+) the explosion time t∗ (p/t) is strictly

larger than t for t sufficiently small, so that p∗(x)/t ∈ At,X for t sufficiently small. We also note that

ℜ
(
eikx/t

ϕt (−k/t)

k2

)
= ℜ

(
exp (ikx/t)

k2
E
(
e−ik(Xt−x0)/t

))
= E

(
ℜ
(
exp (ikx/t)

k2
e−ik(Xt−x0)/t

))
,

and we can easily show that this expression is an even function of ℜ(k) and an odd function of ℑ(k). We can

thus rewrite the normalised call price as

(6.4)
E
(
eXt − S0e

x
)
+

S0
= (1− ex) 11{x<0} − t

ex

2π
ℜ
(∫

ζx

eixk/tϕt (−k/t)

(
1

k2
+O (t)

)
dk

)
,

where we define the contour ζx for every real number x ̸= 0 by

(6.5) ζx : (−∞,∞) → C such that ζx(u) := u+ ip∗(x).

Let us also define the set Z ∈ C by

(6.6) Z := {k ∈ C : ℑ (k) ∈ (p−, p+)} ,

where p− and p+ are defined in (2.2).

6.3. Saddlepoint expansion of the integral in (6.4). The proof of Theorem 3.1 relies on an asymptotic

expansion of the integral in (6.4), stated in Proposition 6.9 below. Before this though, we need to introduce

several tools and prove some preliminary results. We start with the following lemma which characterises the

asymptotic behaviour of the rescaled characteristic function when the maturity t is small.

Lemma 6.1. Let k := kr + iki ∈ C. For any fixed ki such that −ki ∈ (p−, p+) \ {0}, the expansion

ϕt

(
−k

t

)
= U (−ik) exp

(
Λ (−ik)

t

)
(1 +O (t)) , holds uniformly in kr as t tends to zero,

where the function Λ is defined in (2.3) and the function U in Theorem 3.1.
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Remark 6.2. Let p ∈ (p−, p+). From [9] we know that for all t > 0, ϕt(ip/t) is a well-defined real number.

The proof of Lemma 6.1 can be carried out analogously step by step for such a ϕt(ip/t), which implies that

the number U(p) in Theorem 3.1 is real as well.

Proof. Albrecher et al. [1] derived the following closed-form representation for the characteristic function ϕt

under the Heston model:

(6.7) ϕt(k) := E
(
eik(Xt−x0)

)
= exp

(
C(k, t) + y0D(k, t)

)
,

where

C(k, t) :=
κθ

σ2

(
(κ− iρσk − d(k)) t− 2 log

(
1− g(k)e−d(k)t

1− g(k)

))
,

D(k, t) :=
κ− iρσk − d(k)

σ2

1− e−d(k)t

1− g(k)e−d(k)t
,

g(k) :=
κ− iρσk − d(k)

κ− iρσk + d(k)
, and d(k) :=

(
(κ− iρσk)2 + σ2k (i+ k)

)1/2
,

and we take the principal branch for the complex logarithm. Lee [20] proved that the function ϕt could be

analytically extended in the complex plane inside a strip of regularity. From the above definitions we have the

following asymptotic behaviour for d (−k/t) and g (−k/t) as the ratio t/k tends to zero:

d

(
−k

t

)
= t−1

(
σ2ρ̄2k2 +

(
2κρ− σ

)
iσkt+ κ2t2

)1/2
=

k

t
d0 + d1 +O (t) ,

g

(
−k

t

)
=

κt+ iρσk −
(
σ2ρ̄2k2 + (2κρ− σ) iσkt+ κ2t2

)1/2
κt− iρσk +

(
σ2ρ̄2k2 +

(
2κρ− σ

)
iσkt+ κ2t2

)1/2 = g0 +
t

k
g1 +O

(
t2
)
,

where we define the following quantities (similar to (3.1)):

d0 := σρ̄ck, d1 :=
2κρ− σ

2ρ̄
ick, g0 :=

iρ− ρ̄ck
iρ+ ρ̄ck

, g1 :=
(2κ− ρσ) ck

σρ̄ (iρ+ ρ̄ck)
2 , ck := csgn(k),

and where the sign function csgn for complex numbers is defined by csgn(k) = 1 if ℜ(k) > 0, or if ℜ(k) = 0

and ℑ(k) > 0, and −1 otherwise. Since |k| ≥ |ℑ(k)| > 0 we have

D

(
−k

t
, t

)
=

1

σ2

(
κ+ iρσ

k

t
− d0

k

t
− d1 +O (t)

)
1− exp

(
−d0k − d1t+O

(
t2
))

1− g(k) exp (−d0k − d1t+O (t2))

=
(iρσ − d0) k

σ2t

1− e−d0k

1− g0e−d0k
+

1

(1− g0e−d0k)σ2

(
e−d0k (iρσ − d0) d1k + (κ− d1)

(
1− e−d0k

) )
+

1− e−d0k

(1− g0e−d0k)
2
σ2

(iρσ − d0)
(
g1 − g0kd1

)
e−d0k +O (t) .

Similarly we have

C

(
−k

t
, t

)
=

κθ

σ2

(
κt+ iρσk − d

(
−k

t

)
t− 2 log

(
1− g (−k/t) exp (−d (−k/t) t)

1− g (−k/t)

))
=

κθ

σ2

(
(iρσ − d0) k − 2 log

(
1− g0 exp (−d0k)

1− g0

))
+O (t) .

We know that for all t > 0, the characteristic function in the Heston model is even in the argument d (see [20,

Page 31]). Therefore the limiting behaviour of ϕt(−k/t) does not depend on the sign function ck, and the

lemma follows from the definition of the functions U and Λ in Theorem 3.1 and in (2.3). �
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Remark 6.3. Note that the assumption |ρ| < 1 on Page 3 implies that 1− g0 is not null , and therefore the

expansion for C(−k/t, t) is well defined. Concerning the denominator in D(−k/t), simple calculations show

that 1 − g0 exp(−d0k) = 0 if and only if k = − log
(
(iρ+ ρ̄) / (iρ− ρ̄)

)
/ (σρ̄), which is a purely imaginary

number. Tedious but straightforward computations further reveal that this value precisely corresponds—

depending on the sign of ρ—to the boundary points p− and p+, which are excluded. Therefore the expansion

for D(−k/t) is also well defined.

We now state and prove the following lemma which we shall need later in the proof of Proposition 6.9.

Lemma 6.4. Let k := kr + iki ∈ Z. The map kr 7→ ℜ (−ikx− Λ (−ik)) has a unique minimum at zero for

any ki ∈ (p−, p+) .

Proof. Fix ki ∈ (p−, p+). It is then clear that ℜ (−ikx− Λ (−ik)) = kix−ℜ (Λ (ki − ikr)). Hence the lemma

is equivalent to proving that the function kr 7→ ℜ (Λ (ki − ikr)) has a unique maximum at zero. Using the

double angle formulae for trigonometric functions we have

ℜ (Λ (p+ iq)) = ℜ

(
(p+ iq) y0

σ
(
ρ̄ cot

(
1
2σ (p+ iq) ρ̄

)
− ρ
)) =

y0M (q)

σN (q)
,

where the functions M and N are defined by

M(q) := p
(
ρ cos (pρ̄σ) + ρ̄ sin (pρ̄σ)

)
− pρ cosh (qρ̄σ)− qρ̄ sinh (qρ̄σ) ,

N(q) := cosh (qρ̄σ) +
(
1− 2ρ2

)
cos (pρ̄σ)− 2ρρ̄ sin (pρ̄σ) .

Note that N(0) > 0, and N ′(q) > 0 for q > 0. We need to show that M(q)/N(q) < M(0)/N(0) for q ̸= 0.

By the symmetry q 7→ −q, we can take q > 0 and by the symmetry (p, ρ) 7→ (−p,−ρ), we can take p ≥ 0. It

hence suffices to show that for q > 0,

(6.8)
M ′(q)

N ′(q)
<

M(0)

N(0)
,

since the following inequality will therefore hold for all q > 0:

M(q)

N(q)
=

1

N(q)

(
M(0) +

∫ q

0

M ′(u)du

)
<

1

N(q)

(
M(0) +

M(0)

N(0)

∫ q

0

N ′(u)du

)
=

1

N(q)

(
M(0) +

M(0)

N(0)
(N(q)−N(0))

)
=

M(0)

N(0)
.

Since M ′(q)/N ′(q) = −1/σ − pρ− qρ̄ coth (qρ̄σ) < −pρ− 2/σ, the inequality (6.8) will be satisfied as soon as

(6.9) − 2

σ
< pρ+

M(0)

N(0)
.

If ρ ≥ 0 then (6.9) holds since M(0)/N(0) = σΛ(p)/y0 and because Λ(p) ≥ 0 as outlined in Section 2.

Otherwise, for ρ < 0, note that the derivative of the right-hand side of (6.9) with respect to ρ is equal to a

positive factor multiplied by

(2− pρσ) ρ̄− 2ρ2ρ̄ cos (pρ̄σ)− ρρ̄2 sin (pρ̄σ) ≥ ρ̄
(
2− pρσ − 2ρ2 + pρσ

)
> 0,

since
∣∣−ρ̄2 sinα

∣∣ ≤ α for all α > 0. So it suffices to verify (6.9) in the limit as ρ tends to −1. Since

lim
ρ↘−1

(
pρ+

M(0)

N(0)

)
= − 2pσ

σ(2 + pσ)
> − 2

σ
,

then (6.9) is satisfied and the lemma follows. �
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Remark 6.5. Using the functions M and N defined in the proof of Lemma 6.4 above, it is easy to see that the

ratio M(q)/N(q) tends to −∞ as |q| tends to infinity. This implies that for any k ∈ Z, ℜ (−ikx− Λ (−ik))
tends to infinity as |k| tends to infinity.

In order to prove an asymptotic expansion of the integral in (6.4), we first need to choose the optimal contour

ζx defined in (6.5) along which to integrate. By “optimal”, we mean that the contour ζx passes through the

saddlepoint (see Definition 6.6 and Lemma 6.7 below) of the integrand in (6.4).

Definition 6.6. (see [4]) Let F : Z → C be an analytic complex function on an open set Z. A point z0 ∈ Z
such that the complex derivative dF/dz vanishes is called a saddlepoint.

Let us now define the function F : Z → C by

(6.10) F (k) := −ikx− Λ (−ik) , for all k ∈ Z,

where the function Λ is defined in (2.3) and the set Z in (6.6). In the Heston case we are considering, this

saddlepoint can be expressed in closed-form as follows.

Lemma 6.7. For any real number x the function F defined in (6.10) has a saddlepoint at k∗ (x) = ip∗ (x),

where p∗ (x) is the real number defined on Page 3.

Remark 6.8. By the characterisation of the Fenchel-Legendre transform Λ∗ of Λ in (2.4) and the remarks

following this definition, the equality F (k∗(x)) = Λ∗(x) holds for any real number x.

Proof. Let x ∈ R. By definition of p∗(x) on Page 3, we know that the equation Λ′ (p) = x has a unique solution

p∗(x) ∈ (p−, p+). Therefore F ′ (k∗ (x)) = −ix+ iΛ′ (p∗ (x)) = 0 and the lemma follows. �

We now have all the ingredients to prove the following proposition which, combined with (6.4), finishes the

proof of Theorem 3.1.

Proposition 6.9. For any real number x ̸= 0 the following equality holds as t tends to zero,

−ext

2π
ℜ
(∫

ζx

eikx/tϕt

(
−k

t

)(
1

k2
+O (t)

)
dk

)
= exp

(
−Λ∗(x)

t

)
A(x)t3/2√

2π
(1 +O (t)) ,

where the functions A and Λ∗ are given in Theorem 3.1 and in (2.4), and the contour ζx in (6.2).

Proof. Since F (k) = −ikx− Λ (−ik) by (6.10), Lemma 6.1 applied on the contour ζx implies

ℜ
(∫

ζx

eikx/tϕt

(
−k

t

)(
1

k2
+O (t)

)
dk

)
= ℜ

(∫
ζx

U (−ik) e−F (k)/t(1 +O (t))

(
1

k2
+O (t)

)
dk

)
.(6.11)

The functions F and u are both analytic along ζx. Lemma 6.4 implies the inequality ℜ (F (k)) > ℜ (F (ip∗(x)))

for all k ∈ ζx\{ip∗(x)}, and ℜ (F (k)) tends to infinity as |k| tends to infinity by Remark 6.5 and Definition 6.6.

We further know from [9, Proof of Theorem 1.1] that the quantity F ′′ (ip∗(x)) is not null. Therefore the Laplace

expansion in [23, Chapter 4, Theorem 7.1] leads to the following expression:

ext

2π
ℜ
(∫

ζx

U (−ik) exp
(
−F (k)

t

)
dk

k2

)
=

ex√
π
exp

(
−F (k∗(x))

t

)
U (−ik∗(x)) t3/2

k∗(x)2
√

2F ′′ (k∗(x))
(1 +O (t))

= − ex√
π
exp

(
−Λ∗(x)

t

)
U (p∗(x)) t3/2

p∗(x)2
√

2Λ′′(p∗(x))
(1 +O (t))

= − exp

(
−Λ∗(x)

t

)
A (x) t3/2√

2π
(1 +O (t)) ,
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as t tends to zero, where the equalities F (k∗(x)) = Λ∗(x) and F ′′(k∗(x)) = Λ′′ (p∗(x)) follow from the definition

of the function F in (6.10) and the properties of p∗(x) on Page 3. The O (t) terms in (6.11) constitute higher

order terms which we can neglect at the order we are interested in. �

Remark 6.10. The methodology for the general case x ̸= 0 above does not hold in the at-the-money case

x = 0 since the horizontal contour of integration passes through the saddlepoint k∗(0) = ip∗(0) = 0 of the

integrand, and the ratio U (−ik) /k2 (appearing in the proof of Proposition 6.9) is not analytic at the origin, so

the Laplace expansion [23, Theorem 7.1, chapter 4] does not apply any more. Note however that Corollary 4.4

provides a small-maturity expansion of the at-the-money implied volatility.
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7. Appendix

7.1. Proof of Proposition 3.4. Define d± :=
(
−x± σ2

t t/2
)
/
(
σt

√
t
)
. We first consider the case x > 0. Note

that d± tends to −∞ as t tends to 0. Substituting the asymptotic series

1−N (z) = (2π)
−1/2

e−z2/2
(
z−1 − z−3 +O

(
z−5

))
, as z tends to infinity,

into the Black-Scholes call option formula with implied volatility σt, we obtain

E
(
eXt − S0e

x
)
+
= S0N (d+)− S0e

xN (d−) = S0 (1−N (−d+)− ex + exN (−d−))

=
S0√
2π

exp

(
−
d2+
2

)(
− 1

d+
+

1

d−
+

1

d3+
− 1

d3−
+O

(
d−5
+

))
,(7.1)

as t tends to zero, where we used the fact that −d2−/2 + x = −d2+/2. Since the expansion

exp

(
−
d2+
2

)
= exp

(
− x2

2Σ2t
+

x
(
Σ4 + cx

)
2Σ4

− Σ8 + 4x2c2

Σ6

t

8
+O

(
t2
))

=

(
1− Σ8 + 4x2c2

Σ6

t

8
+O

(
t2
))

exp

(
− x2

2Σ2t
+

x(Σ4 + cx)

2Σ4

)
holds as well as d−1

− − d−1
+ + d−3

+ − d−3
− = x−2Σ3t3/2 + O

(
t5/2

)
, we can then plug this expression into (7.1)

and the desired result follows. The proof of the case x < 0 is analogous.

When x = 0, note that d± converges to zero as t tends to zero, so that we use the asymptotic series N (z) =

1/2 + (2π)
−1/2 (

z − 1
6z

3 +O
(
z5
))

and the proposition follows from

E
(
eXt − S0e

x
)
+
= S0N (d+)− S0N (d−) =

S0√
2π

(
(d+ − d−)−

1

6

(
d3+ − d3−

)
+O

(
d5+
))

=
S0√
2π

(
Σt1/2 +

12c− Σ4

24Σ
t3/2 +O

(
t5/2

))
.

7.2. Proof of Theorem 4.2. Let us first assume x > 0. Note first that the equalities (4.1) follow from

equating the leading order and the correction terms for the Heston and the Black-Scholes models as

(7.2) Λ∗(x) = Λ∗
BS(x) =

x2

2σ2
0(x)

, and A(x) = ABS(x, σ0(x)) exp

(
a(x)x2

2σ4
0(x)

)
.

We now have to make this argument rigorous, since we do not know that σt admits an expansion of the form

stated in the theorem. However Theorem 3.1 and (7.2) imply that for all ε > 0, there exists t∗(ε) such that

E
(
eXt − S0e

x
)
+

S0
≤ A(x)√

2π
t3/2 exp

(
−Λ∗(x)

t

)
eε =

ABS(x, σ0(x))√
2π

exp

(
a(x)x2

2σ4
0(x)

)
t3/2 exp

(
− x2

2σ2
0(x)t

)
eε
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holds for all t < t∗(ε). The function a is continuous on (0,∞). Therefore for any δ > 0 sufficiently small we

can choose ε′ > 0 such that the equality

exp

(
1

2

a (x)x2

σ4
0(x)

)
eε = exp

(
1

2

(a(x) + δ)x2

σ4
0(x)

)
e−ε′ ,

holds and hence Theorem 3.1 implies the inequalities

E
(
eXt − S0e

x
)
+
≤ ABS(x, σ0(x))√

2π
exp

(
(a(x) + δ)x2

2σ4(x)

)
t3/2 exp

(
− x2

2σ2
0 (x) t

)
e−ε′

≤ CBS

(
x, t,

√
σ2
0(x) + (a(x) + δ) t

)
for t sufficiently small. Since the Black-Scholes formula is a strictly increasing function of the volatility then

the upper bound σ2
t (x) ≤ σ2

0(x) + a (x) t + δt holds for all x > 0. We proceed similarly for the lower bound

and for the case x < 0, and the theorem follows.

7.3. Proof of Corollary 4.3. We wish to compute a series expansion for p∗(x) defined on page 3 as the

unique solution to x = Λ′(p∗(x)) when x is close to zero (recall that p∗(0) = 0). We substitute an ansatz

power series expansion for p∗(x) and then recursively determine the coefficients such that the power series of

the composition Λ′(p∗(x)) equals x. We only indicate below the important auxiliary quantities:

Λ(p) =
y0
2
p2 +

ρσy0
4

p3 +
σ2y0
24

(
1 + 2ρ2

)
p4 +

ρσ3y0
48

(
2 + ρ2

)
p5 +O

(
p6
)
,

U(p) = 1− y0
2
p+

(
κ(θ − y0)− σρy0 +

y20
2

)
p2

4

+

(
κρσ

3
(θ − 2y0)−

σ2y0
3

(
1 + ρ2

)
− y0

2
(κ(θ − y0)− ρσy0)−

y30
12

)
p3

4
+O

(
p4
)
,

Λ∗(x) =
x2

2y0
− ρσ

4y20
x3 +

σ2

96y30

(
19ρ2 − 4

)
x4 +O

(
x5
)
,

σ0(x) =
√
y0 +

ρσx

4
√
y0

+

(
1− 5

2
ρ2
)

σ2x2

24y
3/2
0

+O
(
x3
)
,

A(x) =
y
3/2
0

x2
+

√
y0

4x
(3ρσ + 2y0)−

1

96
√
y0

(
11ρ2σ2 − 8σ2 − 48ρσy0 − 24κθ + 24κy0 − 12y20

)
+O (x) .

From these formulae we deduce the expansion

A(x)

ABS(x, σ0(x))
= 1+

σ2(ρ2 − 4) + 12ρσy0 + 24κ(θ − y0)

96y20
x2−ρσx3

96y30

(
10ρσy0+3σ2(ρ2−2)−20κy0+28κθ

)
+O

(
x4
)
,

which implies the expression for a(x) = x−22σ4
0(x) log (A(x)/ABS(x, σ0(x))) in Corollary 4.3.
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