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Abstract: We compute the large-maturity smile for the correlated Stein-Stein stochastic volatility model dSt =
StYtdW 1

t , dYt = κ(θ−Yt)dt+σdW 2
t , dW

1
t dW

2
t = ρdt, using the known closed-form solution for the characteristic

function of the log stock price given in Schöbel&Zhu[SZ99]. The Stein-Stein model is not covered by the results
in [FK13] and [JKRM13] because the volatility fails to satisfy the sublinear growth condition in [FK13] and is
not an affine model.†

1. Introduction

The last few years have witnessed a number articles on large-time asymptotics for stochastic volatility models
with/without a jump component. Using the Gärtner-Ellis theorem, [FJ11] compute the implied volatility smile for the
popular Heston stochastic volatility model when κ > 0, κ > ρσ, in the large-time, large log-moneyness regime and
[FJM10] compute the correction term using saddlepoint methods; the large-time smile is identical to the large-time
smile for the Barndorff-Nielsen Normal Inverse Gaussian model, and [GJ11] show that the asymptotic smile can be
computed in closed-form via the Gatheral SVI parameterization. [JM12] derive similar results for a displaced Heston
model, and relax the aforementioned conditions on κ, ρ, σ. [JKRM13] have extended the results in [FJ11] to a general
class of affine stochastic volatility models (with jumps), which includes the Heston model with state-independent jumps,
the Bates model with state-dependent jumps and the Barndorff-Nielsen-Shephard model.

[FP12] compute large-time asymptotics for the SABR model with β = 1, ρ ≤ 0 and β < 1, ρ = 0; in particular for
β = 1, ρ ≤ 0, they compute a closed-form expression for the asymptotic log stock price density and establish large-time
asymptotics for the CEV model and the uncorrelated CEV-Heston model in the large-time, fixed-strike regime and a
new large-time, large log-moneyness regime. [Forde11b] derives similar results for the modified SABR model in terms
of the large-time asymptotic density of the Brownian exponential functional.

The long-term asymptotic behavior of the smile for exponential Lévy models and more general martingale models
have been studied in [RT10], where it is proved that for fixed log-moneyness k and large maturity, the implied volatility
converges to a constant value that does not depend on k. This phenomenon is typically referred as the “smile-flattening”
effect, which arises from the large deviation principle for i.i.d. random variables (see e.g. Cramér’s theorem in [DZ98]).
For a general exponential Lévy model with mild conditions on the cumulant generating function, [GL11] derive an
expansion of the form σ̂t(x)

2 = σ2
∞ + a1(x)/t + a2(x)/t

2 + o((log t)2/t3) as t → ∞ for the implied volatility σ̂t(x) at
log-moneyness x and maturity t, where a1(x) and a2(x) are respectively affine and quadratic in x.

In [Forde11], the author derives a large deviation principle for the log stock price under an uncorrelated stochastic
volatility model driven by an Ornstein-Uhlenbeck process with a bounded volatility function. For this we use the
fact that the occupation measure for the Ornstein-Uhlenbeck process satisfies an LDP with a good, convex lower
semicontinuous rate function under the topology of weak convergence (and under the Prohorov metric), see section 7 in
Donsker&Varadhan[DV76] (see also page 178 in Stroock[Str84] and [Pin85]), combined with the standard contraction
principle and exponential tightness. In [FK13], we relax the assumptions of bounded volatility and zero correlation made

in [Forde11]. The rate function for Xt/t now has the variational representation I(x) = infµ∈P(R)
(x−M(µ))2

2ν(µ) + Iα(µ),

for some linear functionals M,ν which depend on the correlation ρ. Using the LDP, we translate these results into
large-time asymptotics for call options and implied volatility, and we extend the analysis to incorporate stochastic
interest rates, by deriving a similar LDP for a three-factor model driven a CIR short rate process.

In this article, we look at the large-time behavior of the closed form expression for the characteristic function of the
log stock price under the Stein-Stein model introduced in [SS91], which is derived in [SZ99]. Using the Gärtner-Ellis
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Theorem from large deviations theory, we compute a large-time large deviation principle for the log stock price. From
this we can then characterize the large-time behavior of call option prices and implied volatility in the large-time, large
log-moneyness regime. The Stein-Stein model reduces to a special case of the Heston model when the mean reversion
level θ = 0. We refer the reader to Deuschel et al.[DFJV14] for a discussion on tail asymptotics for the Stein-Stein
model using Laplace’s method on Wiener space for a small-noise diffusion process and some simple scaling properties,
and the earlier work on tail asymptotics for the zero correlation case in Gulisashvili&Stein[GS10].

2. Large deviation theory and the Gärtner-Ellis theorem

In this section, we recall some fundamental notions in large deviations theory (we refer the reader to Section 2.3 in
[DZ98] and Section 2.2 in [JM12] for more details). A family of random variables (Zt) is said to satisfy the large
deviation principle (LDP) as t → ∞ with good rate function I if for all B ∈ B(R) we have the following bounds

− inf
x∈Bo

I(x) ≤ lim inf
t→∞

1

t
logP(Zt ∈ B) ≤ lim sup

t→∞

1

t
logP(Zt ∈ B) ≤ − inf

x∈B̄
I(x) ,

where Bo (B̄) denotes the interior (resp. closure) of B.

We now assume that the cumulant generating function Vt(p) = logE(epZt) is finite on some neighbourhood of zero
and that the following limit exists as an extended real number

V (p) = lim
t→∞

1

t
logE(ep tZt) ∀p ∈ R . (2.1)

Let DV = {p ∈ R : |V (p)| < ∞} and assume that {0} ∈ Do
V . From Hölder’s inequality we can show that Vt is convex

for all t > 0 and the limit V is also convex (see Lemma 2.3.9 in [DZ98]). Moreover V (0) = 0, thus (by convexity) we see
that V (p) > −∞ for all p ∈ R. V : R → (−∞,∞] is called essentially smooth if V is differentiable in Do

V and satisfies
limn→∞ |V ′(pn)| = ∞ for every sequence (pn) in Do

V which converges to a boundary point of Do
V . A cgf V which

satisfies this second property is called steep. The Fenchel-Legendre transform V ∗ of V is defined by the variational
formula

V ∗(x) = sup
p∈R

[px − V (p)]

for all x ∈ R, with an effective domain DV ∗ = {x ∈ R : V ∗(x) < ∞}. In general V ∗ can be discontinuous and DV ∗

can be a strict subset of R (see section 2.3 in [DZ98] for some simple examples).

We now state a simplified version of Gärtner-Ellis theorem (c.f. Theorem 2.3.6 in [DZ98]) which will needed in the
next section.

Theorem 2.1. Let (Zt)t>0 be a family of random variables for which V as defined in (2.1) satisfies {0} ∈ D◦
V . If V

is essentially smooth and lower semicontinuous, then the LDP holds with good rate function V ∗.

3. The Stein-Stein model

From here on, we work on a probability space (Ω,F ,P) with a filtration (Ft)t≥0 throughout, supporting two independent
Brownian motions and satisfying the usual conditions. We now recall the Stein-Stein stochastic volatility model for a
log stock or forward price process Xt = logSt:{

dXt = − 1
2Y

2
t dt+ YtdW

1
t ,

dYt = κ(θ − Yt)dt+ σdW 2
t

(3.1)

where κ, σ > 0, X0 = x0, Y0 = y0, and W 1,W 2 are Brownian motions such that dW 1
t dW

2
t = ρdt, |ρ| < 1. The law of

Xt − x0 does not depend on x0, so without loss of generality we set X0 = 0.

We first verify the martingale property for St.
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Proposition 3.1. (St) is a martingale.

Proof. Let 0 < t1 < t2 < ∞. We know that supt≥0 E(ecY
2
t ) < ∞ if c < κ/σ2, using that Yt ∼ N(e−κty0 + θ(1 −

e−κt), σ2

2κ (1− e−2κt)). Now consider a uniform random variable U on [t1, t2], independent of S, and let FY
t = σ(Ys; 0 ≤

s ≤ t) denote the filtration generated by the Y process. Then we have

E(e
1
2

∫ t2
t1

Y 2
s dt) = E(e

1
2 (t2−t1)E(Y 2

U | FY
t ))

≤ E(E(e
1
2 (t2−t1)Y

2
U |FY

t )

(using the conditional Jensen’s inequality)

= E(
1

t2 − t1

∫ t2

t1

e
1
2 (t2−t1)Y

2
s ds) < ∞

=
1

t2 − t1

∫ t2

t1

e
1
2 (t2−t1)E(Y 2

s )ds) < ∞

(by Fubini’s theorem)

for 1
2 (t2−t1) ≤ κ/σ2. By Corollary 5.14, p.199 in [KS91], we conclude that St = e−

1
2

∫ t
0
Y 2
s ds+

∫ t
0
YsdW

1
s is a martingale.

3.1. The large-time large deviation principle for the re-scaled log return

The following proposition establishes a large-time large deviation principle for the re-scaled log return for the Stein-Stein
model:

Proposition 3.2. Xt/t satisfies a large-time LDP as t → ∞ with a good convex continuous rate function given by the
Fenchel-Legendre transform

I(x) = sup
p
[px− V (p)]

where

V (p) = V (p;κ, θ, σ, ρ) =

{
1
2

[
κ− pρσ + (p−1)pθ2κ2

Γ(p)2 − Γ(p)
]

(p ∈ (p−, p+))

+∞ (p /∈ (p−, p+))

ρ̄ =
√
1− ρ2, Γ(p) =

√
κ2 − 2pκρσ + p(1− pρ̄2)σ2 and p± =

σ2−2κρσ±σ
√

4κ2−4κρσ+σ2

2σ2ρ̄2 are the roots of Γ(p)2. I is

continuous and attains its minimum value uniquely at x∗ = V ′(0) = − 1
2 (θ

2 + σ2/2κ).

Proof. From Eq 13 in [SZ99], we have the following closed-form expression for the characteristic function of the log
return

ϕt(u) = E(eiuXt) = e−
1
2 iuρ(σ

−1y2+σt)+ 1
2D(t,ŝ1,ŝ2,ŝ3)y

2 +B(t,ŝ1,ŝ2,ŝ3)y+C(t,ŝ1,ŝ2,ŝ3) (3.2)

for u ∈ R, where

D(t, T ) =
1

σ2
[κ− γ1

sinh(γ1t) + γ2 cosh(γ1t)

cosh(γ1t) + γ2 sinh(γ1t)
]

B(t, T ) =
1

σ2γ1

κθγ1 − γ2γ3 + γ3[sinh(γ1t) + γ2 cosh(γ1t)]

cosh(γ1t) + γ2 sinh(γ1t)

C(t, T ) = −1

2
log[cosh(γ1t) + γ2 sinh(γ1t)] +

1

2
κt+

κ2θ2γ2
1 − γ2

3

2σ2γ3
1

(
sinh(γ1t)

cosh(γ1t) + γ2 sinh(γ1t)
− γ1t)

+
(κθγ1 − γ2γ3)γ3

σ2γ3
1

cosh(γ1t)− 1

cosh(γ1t) + γ2 sinh(γ1t)

where y = Y0 and ŝ1 = 1
2u

2ρ̄2+ 1
2 iu(1−2κρ/σ), ŝ2 = iuκθρσ−1, ŝ3 = 1

2 iuρσ
−1. ϕt(u) is regular in a neighborhood of the

origin, so by Theorem 7.1.1 in Lukacs [Luk70], ϕt(u) is also regular in the horizontal strip {u ∈ C : p−(t) < u < p+(t)},
where

p+(t) = sup
p≥1

E(epXt) < ∞ ,

p−(t) = inf
p≤0

E(epXt) < ∞ (3.3)
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Note that p±(t) is not the same as p± as defined in the statement of the proposition, and we will show that p−(t) ≤ p−
and p+ ≤ p+(t) (see discussion above (3.6)).

Looking at the expressions for B,C,D on page 12 in [SZ99], we see that ϕt(u) has a pole at u = −ip if and only if

cosh(γ1t) + γ2 sinh(γ1t) = 0 .

For p ∈ (p−, p+) i.e. such that Γ(p) > 0, using that γ1 = Γ(p) and −1/γ2 = −Γ(p)/(κ − ρpσ), this equation is

satisfied if t = t∗(p) = 1
γ1

tanh−1( 1
γ2
) = 1

Γ(p) tanh
−1(− Γ(p)

κ−pρσ ). But negative t-values are physically meaningless, so

our preliminary analysis would indicate that

T ∗(p) =

{
1
γ1

tanh−1( 1
γ2
) = 1

Γ(p) tanh
−1(− Γ(p)

κ−pρσ ) (κ− pρσ < 0)

+∞ (κ− pρσ ≥ 0)

where T ∗(p) = sup{t : E(epXt) < ∞} is the moment explosion time. We now first consider the case when p > 1. In this
case, if ρ ≤ 0 then κ− ρpσ > 0 and for p ∈ (p−, p+) we have that Γ(p) > 0, so T ∗(p) = +∞. Otherwise, if ρ > 0, then
κ− pρσ < 0 if p > p∗ where p∗ = κ/(ρσ). However

p∗ − p+ =
2κ− ρσ − ρ

√
4κ2 − 4κρσ + σ2

2ρσρ̄2
,

and using that

(2κ− ρσ)2 − ρ2(4κ2 − 4κρσ + σ2) = 4κρ̄2(κ− ρσ) > 0

we see that p∗ > p+, so it turns out that T ∗(p) = ∞ for all p ∈ (1, p+). An almost identical calculation shows that
T ∗(p) = ∞ for all p ∈ (p−, 0). Moreover, for p ∈ [0, 1], from Jensen’s inequality and the martingale property we have
that E(Sp

t ) ≤ Sp
0 < ∞ for all t. Thus we have shown that T ∗(p) = ∞ for all p ∈ (p−, p+), so the mgf of Xt is given by

the analytic extension of ϕ to the imaginary axis for p ∈ (p−, p+).

The expression for C(.) in [SZ99] is given by

C(t, ŝ1, ŝ2, ŝ3) = −1

2
log[cosh(γ1t) + γ2 sinh(γ1t) +

1

2
κt]

+
κ2θ2γ2

1 − γ2
3

2σ2γ3
1

(
sinh(γ1t)

cosh(γ1t) + γ2 sinh(γ1t)
− γ1t) +

(κθγ1 − γ2γ3)γ3
σ2γ3

1

(
cosh(γ1t)− 1

cosh(γ1t) + γ2 sinh(γ1t)
)

where γ1 =
√
2σ2ŝ1 + κ2, γ2 = (κ − 2σ2ŝ3)/γ1 and γ3 = κ2θ − ŝ2σ

2, and for u = −ip and p ∈ (p−, p+), using
that γ1 = Γ(p) > 0 and cosh(γ1t) ∼ sinh(γ1t) ∼ eγ1t as t → ∞, we obtain the following large-time behavior for
C(t, ŝ1, ŝ2, ŝ3):

C(t, ŝ1) ∼ 1

2

[
κ+

(p− 1)pθ2κ2

Γ(p)2
− Γ(p)

]
= t

[
V (p) +

1

2
pρσ

]
(t → ∞) . (3.4)

Letting t → ∞ and using that coth(γ1t) → 1 as t → ∞, we also find that

B(t, ŝ1, ŝ2, ŝ3) ∼ − 1

σ2γ1
[γ3 − κθγ1] = O(1) (t → ∞) ,

D(t, ŝ1, ŝ2, ŝ3) ∼ 1

σ2
(κ− γ1) = O(1) (t → ∞) ,

and thus constitute higher order terms as t → ∞, which we can ignore at the order we are interested in. Thus we have

lim
t→∞

1

t
logE(epXt) = V (p) (3.5)

for p ∈ (p−, p+). This means that for p ∈ (p−, p+) and t < ∞ fixed, we have E(epXt) < ∞, so

p−(t) ≤ p− ,

p+(t) ≥ p+ . (3.6)



Forde/The large-maturity smile for the Stein-Stein model 5

We now consider p ≥ p+. To this end we fix a q ∈ (1, p+); then from the monotonicity of the Lp norm we have

(E(eqXt))1/q ≤ (E(epXt))1/p .

From this and (3.5) we obtain

V (q) = lim inf
t→∞

1

t
logE(eqXt)) ≤ lim inf

t→∞

1

t
log(E(epXt))q/p .

But ∀K > 0, there exists a q(K) < p+ such that V (q) ≥ K. Thus for t sufficiently large we have

(eKt)p/q(K) ≤ E(epXt)

or

K ≤ K
p

q(K)
≤ lim inf

t→∞

1

t
logE(epXt) .

Thus letting K → ∞ we see that limt→∞
1
t logE(e

pXt) = +∞. A similar analysis shows that limt→∞
1
t logE(e

pXt) =
+∞ for p ≤ p−.

Differentiating V (p) we obtain

V ′(p) =
(2p− 1)θ2κ2 + 2(1− p)pθ2κ2Γ′(p)

Γ(p)2
− 1

2
(ρσ + Γ′(p))

and

Γ′(p) =
σ(−2κρ+ (1 + 2p(−1 + ρ2))σ)

2Γ(p)
.

Nothing that Γ(p±) = 0, we see that V (p) and |V ′(p)| → +∞ as p → p± so V is essentially smooth, and V is lower
semicontinuous. Vt(p) = E(epXt) satisfies Assumption 2.3.2 in [DZ98] as t → ∞, so by Lemma 2.3.9 in [DZ98] V is also
convex, so from the Gärtner-Ellis Theorem (see Theorem 2.3.6 in [DZ98]) Xt/t satisfies the LDP with good convex
rate function I(x).

We also have the upper bound

I(x) ≤ p+x ∨ p−x − Vmin < ∞

where Vmin = infp∈(p−,p+) V (p) > −∞. But a convex function is continuous on the interior of its domain, so I is
continuous. Finally, from elementary calculations we find that the unique minimum of I occurs at x∗ = (I ′)−1(0) =
V ′(0).

4. Call options and implied volatility

Let P∗(A) = 1
S0

E(St1A) for A ∈ Ft denote the Share measure (P∗ is a probability measure because St is a martingale
by Proposition 3.1). From Girsanov’s theorem, it is easily shown that d(−Xt) = −1

2Y
2
t dt− YtdW

∗1
t ,

dYt = [κ(θ − Yt) + ρσYt] dt+ σdW ∗2
t

= κ̄(θ̄ − Yt)dt+ σdW ∗2
t ,

(4.1)

where κ̄ = κ− ρσ, θ̄ = κθ/(κ− ρσ) and dW ∗1
t dW ∗2

t = ρdt are independent P∗-Brownian motions.

Assumption 4.1. From here on we further assume that κ̄ = κ − ρσ > 0, which ensures that Yt is mean-reverting
under P∗.

From (4.1), we have the following trivial corollary of Proposition 3.2.
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Fig 1. Here we have plotted V (p) for κ = 1.15, θ = 0.1, σ = 0.2, ρ = −0.4.
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Fig 2. Here we have plotted the rate function I(x) for the same parameter values as above.
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Corollary 4.2. For κ > ρσ, −Xt/t satisfies the LDP under P∗ as t → ∞ with a good convex continuous rate function
IS(x) given by the Fenchel-Legendre transform of

VS(p) = V (p; κ̄, θ̄, σ,−ρ)

and IS is continuous and attains its minimum value uniquely at −x+ = (VS)
′(0) = −1

2 (θ̄
2 + σ2/2κ̄).

By Corollary 4.2 and the continuity of the rate function IS , we obtain the following corollary, which will be used to
characterize the large-time behaviour of call option prices.

Corollary 4.3.

lim
t→∞

1

t
logP∗(Xt > xt) = −IS(x) (x > x+) ,

lim
t→∞

1

t
logP∗(Xt < xt) = −IS(x) (x < x+) .

Recall that the payoff of a European call option with strike K is E(St − K)+, and the payoff of a European put
option with strike K is E(K − St)

+.

Corollary 4.4. We have the following large-time asymptotic behaviour for put/call options in the large-time, large
log-moneyness regime:

− lim
t→∞

1

t
logE(St − S0e

xt)+ = IS(x) (x ≥ x+) ,

− lim
t→∞

1

t
log[S0 − E(St − S0e

xt)+] = IS(x) (x∗ ≤ x ≤ x+) ,

− lim
t→∞

1

t
log(E(S0e

xt − St)
+) = IS(x) (x ≤ x∗)

Proof. We first assume x > x+, and recall that IS(x) is non-decreasing for x > x+. From Corollary 4.3, we know that
for all ε > 0 there exists a t∗ = t∗(ε) such that for all t > t∗ we have

1

S0
E(St − S0e

xt)+ = P∗(Xt > xt)− extP(Xt > xt) ≤ P∗(Xt > xt) ≤ e−(IS(x)−ε)/t

which gives the upper bound for the call price. For the lower bound we have

1

S0
E(St − S0e

xt)+ = EP∗
(1− exte−Xt)+ = extEP∗

(e−xt − e−Xt)+ . (4.2)

Observe that for any δ > 0,

EP∗
(e−xt − e−Xt)+ ≥ EP∗

[(e−xt − e−Xt)+1{−Xt<−xt−δ}] ≥ (e−xt − e−xt−δ)P∗(−Xt < −xt− δ) .

Combining this with (4.2) we have

1

S0
E(St − S0e

xt)+ ≥ ext(e−xt − e−xt−δ)P∗(−Xt < −xt− δ)

= (1− e−δ)P∗(−Xt < −xt− δ)

= (1− e−δ)P∗(Xt/t > x+ δ/t)

≥ (1− e−δ)P∗(Xt/t > x+ δ).

Using Corollary 4.3 we get

lim
t→∞

1

t
logE(St − S0e

xt)+ ≥ IS(x+ δ).

This holds for all δ > 0, so taking limδ→0 and by the continuity of IS(x) we obtain the first result that limt→∞
1
t logE(St−

S0e
xt)+ = IS(x). The other cases follow similarly.
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Fig 3. Here we have plotted the asymptotic implied volatility σ̂(x) for κ = 1.15, θ = 0.1, σ = 0.2 and ρ = −.8,−.6,−.4,−.2 and 0 (in blue,
light blue, purple, grey and black dashed respectively).
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Fig 4. Here we have plotted the asymptotic implied volatility σ̂(x) for κ = 1.15, θ = 0.1, ρ = −0.4 and σ = .04, .08, .12, .16 and .2 (in blue,
light blue, purple, grey and black dashed respectively).

4.1. Implied volatility

Using the same proofs as in Corollary 1.7 and Corollary 2.17 in [FJ11] for the Heston model (or Theorem 14 in [JKRM13]
for a general affine model), we have the following asymptotic behaviour in the large-time, large log-moneyness regime,
where σ̂t(xt) is the implied volatility of a put/call option with strike S0e

xt for the correlated Stein-Stein model:

σ̂∞(x)2 = lim
t→∞

σ̂2
t (xt) =

{
2(2I(x)− x− 2

√
I(x)2 − I(x)x) (x /∈ [x∗, x+])

2(2I(x)− x+ 2
√
I(x)2 − I(x)x) (x ∈ (x∗, x+)) .
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