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Abstract: We compute the large-maturity smile for the correlated Stein-Stein stochastic volatility model dS; =
StYrdWi,dY; = k(0—Y1)dt+odW2, dWrdW2 = pdt, using the known closed-form solution for the characteristic
function of the log stock price given in Schobel&Zhu[SZ99]. The Stein-Stein model is not covered by the results
in [FK13] and [JKRM13] because the volatility fails to satisfy the sublinear growth condition in [FK13] and is
not an affine model.t

1. Introduction

The last few years have witnessed a number articles on large-time asymptotics for stochastic volatility models
with/without a jump component. Using the Géartner-Ellis theorem, [FJ11] compute the implied volatility smile for the
popular Heston stochastic volatility model when £ > 0, K > po, in the large-time, large log-moneyness regime and
[FIM10] compute the correction term using saddlepoint methods; the large-time smile is identical to the large-time
smile for the Barndorff-Nielsen Normal Inverse Gaussian model, and [GJ11] show that the asymptotic smile can be
computed in closed-form via the Gatheral SVI parameterization. [JM12] derive similar results for a displaced Heston
model, and relax the aforementioned conditions on &, p,o. [JKRM13] have extended the results in [FJ11] to a general
class of affine stochastic volatility models (with jumps), which includes the Heston model with state-independent jumps,
the Bates model with state-dependent jumps and the Barndorff-Nielsen-Shephard model.

[FP12] compute large-time asymptotics for the SABR model with 8 =1,p < 0 and 8 < 1, p = 0; in particular for
B =1,p <0, they compute a closed-form expression for the asymptotic log stock price density and establish large-time
asymptotics for the CEV model and the uncorrelated CEV-Heston model in the large-time, fixed-strike regime and a
new large-time, large log-moneyness regime. [Fordellb] derives similar results for the modified SABR model in terms
of the large-time asymptotic density of the Brownian exponential functional.

The long-term asymptotic behavior of the smile for exponential Lévy models and more general martingale models
have been studied in [RT10], where it is proved that for fixed log-moneyness k and large maturity, the implied volatility
converges to a constant value that does not depend on k. This phenomenon is typically referred as the “smile-flattening”
effect, which arises from the large deviation principle for i.i.d. random variables (see e.g. Cramér’s theorem in [DZ98]).
For a general exponential Lévy model with mild conditions on the cumulant generating function, [GL11] derive an
expansion of the form 6(z)? = 0% + a1(x)/t + ax(z)/t> + o((logt)?/t3) as t — oo for the implied volatility 6+(z) at
log-moneyness x and maturity ¢, where a1 (z) and as(z) are respectively affine and quadratic in z.

In [Fordell], the author derives a large deviation principle for the log stock price under an uncorrelated stochastic
volatility model driven by an Ornstein-Uhlenbeck process with a bounded volatility function. For this we use the
fact that the occupation measure for the Ornstein-Uhlenbeck process satisfies an LDP with a good, convex lower
semicontinuous rate function under the topology of weak convergence (and under the Prohorov metric), see section 7 in
Donsker& Varadhan[DV76] (see also page 178 in Stroock[Str84] and [Pin85]), combined with the standard contraction
principle and exponential tightness. In [FK13], we relax the assumptions of bounded volatility and zero correlation made

2
in [Fordell]. The rate function for X;/t now has the variational representation I(z) = inf,cpm) % + I (p),
for some linear functionals M, v which depend on the correlation p. Using the LDP, we translate these results into
large-time asymptotics for call options and implied volatility, and we extend the analysis to incorporate stochastic

interest rates, by deriving a similar LDP for a three-factor model driven a CIR short rate process.

In this article, we look at the large-time behavior of the closed form expression for the characteristic function of the
log stock price under the Stein-Stein model introduced in [SS91], which is derived in [SZ99]. Using the Gértner-Ellis
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Theorem from large deviations theory, we compute a large-time large deviation principle for the log stock price. From
this we can then characterize the large-time behavior of call option prices and implied volatility in the large-time, large
log-moneyness regime. The Stein-Stein model reduces to a special case of the Heston model when the mean reversion
level § = 0. We refer the reader to Deuschel et al.[DFJV14] for a discussion on tail asymptotics for the Stein-Stein
model using Laplace’s method on Wiener space for a small-noise diffusion process and some simple scaling properties,
and the earlier work on tail asymptotics for the zero correlation case in Gulisashvili&Stein[GS10].

2. Large deviation theory and the Géartner-Ellis theorem

In this section, we recall some fundamental notions in large deviations theory (we refer the reader to Section 2.3 in
[DZ98] and Section 2.2 in [JM12] for more details). A family of random variables (Z;) is said to satisfy the large
deviation principle (LDP) as t — oo with good rate function I if for all B € B(R) we have the following bounds

1 1
— inf I(z) < liminf-logP(Z; € B) < limsup-logP(Z; € B) < — inf I(x),
zEB° t—oo t t—oco T z€B

where B° (B) denotes the interior (resp. closure) of B.

We now assume that the cumulant generating function V;(p) = log E(eP?¢) is finite on some neighbourhood of zero
and that the following limit exists as an extended real number

1
Vip) = tgrgoglog]E(eptzt) VpeR. (2.1)

Let Dy = {p € R : |V(p)| < oo} and assume that {0} € Dyf,. From Hélder’s inequality we can show that V; is convex
for all ¢ > 0 and the limit V' is also convex (see Lemma 2.3.9 in [DZ98]). Moreover V' (0) = 0, thus (by convexity) we see
that V(p) > —oo for all p e R. V : R — (—00,00] is called essentially smooth if V is differentiable in D¢, and satisfies
limy,, o0 [V/(pr)| = oo for every sequence (p,) in DY which converges to a boundary point of D¢. A cgf V' which
satisfies this second property is called steep. The Fenchel-Legendre transform V* of V is defined by the variational
formula

Vi(z) = EZEW - V(p)]

for all z € R, with an effective domain Dy« = {& € R : V*(x) < oo}. In general V* can be discontinuous and Dy -
can be a strict subset of R (see section 2.3 in [DZ98] for some simple examples).

We now state a simplified version of Gértner-Ellis theorem (c.f. Theorem 2.3.6 in [DZ98]) which will needed in the
next section.

Theorem 2.1. Let (Z;);>0 be a family of random variables for which V' as defined in (2.1) satisfies {0} € Dy,. If V
is essentially smooth and lower semicontinuous, then the LDP holds with good rate function V*.

3. The Stein-Stein model

From here on, we work on a probability space (2, F,P) with a filtration (F;);>¢ throughout, supporting two independent
Brownian motions and satisfying the usual conditions. We now recall the Stein-Stein stochastic volatility model for a
log stock or forward price process X; = log Sy:

{ dX, = —iV2dt + Y, dW}, 3.1)

dY; = k(0 —Y)dt + cdW}?

where x,0 > 0, Xo = 20, Yo = yo, and W, W? are Brownian motions such that dWdW? = pdt, |p| < 1. The law of
X — x¢ does not depend on z(, so without loss of generality we set Xy = 0.

We first verify the martingale property for S;.
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Proposition 3.1. (S;) is a martingale.

Proof. Let 0 < t; < t2 < oo. We know that sup;>g E(eY) < oo if ¢ < k)02, using that Y; ~ N(e "tyg + (1 —

e rt), %(1 —e~2%%)). Now consider a uniform random variable U on [t1,ts], independent of S, and let FY = o(Y,;0 <
s < t) denote the filtration generated by the Y process. Then we have

t

E(e? Ji Yot E(e? (2= tECE | 7))

IN

E(E(e3(2-0Y0 | FY)

(using the conditional Jensen’s inequality)

¢
1 /26%(75241)3’.3615) < o0
ty

lo—1

t

_ 1 / ’ e E—tEYD) gg) < oo
to —1t1 Jy

(by Fubini’s theorem)

for 1(ta—t1) < K/0?. By Corollary 5.14, p.199 in [KS91], we conclude that S, = e~ Jo Y2ds+[g YodW, g 4 martingale. [

3.1. The large-time large deviation principle for the re-scaled log return

The following proposition establishes a large-time large deviation principle for the re-scaled log return for the Stein-Stein
model:

Proposition 3.2. X/t satisfies a large-time LDP as t — oo with a good convex continuous rate function given by the
Fenchel-Legendre transform

I(z) = suplpz—V(p)]
P

where

1 (p—1)po*K?

V) =Vipnbop) = { 277 Peo e ) (v € ()
+o0 (p & (p—p+))
0'2— RpoLOo Re—4Kkpo+0o .

p=+1-—p2 T(p) = \/&2 — 2prpo + p(1 —pp?)o? and py = 2rpot 20”;;; Arpoto?  ore the roots of T(p)?%. T is
continuous and attains its minimum value uniquely at z* = V'(0) = —$(0% 4+ 02 /2k).

Proof. From Eq 13 in [SZ99], we have the following closed-form expression for the characteristic function of the log
return

¢t(u) — E(eiuxt) _ e—%iup(o—*ly2+o-t)+%D(t,§17§2)§3)y2+B(t,§17§2}.§3)y+C(t,§1,§27§3) (32)

for u € R, where

D(t,T) = i[ﬁ —m sinh(v1t) + 72 cosh(v1t)
7 o2 cosh(v1t) 4+ 2 sinh(y1t)
B(LT) — 21 K0y1 — 7273 + 73 [sinh(%.t) + 75 cosh(711)]
Tm cosh(y1t) + 2 sinh(v1t)
202~2 _ A2 .
D) = =)+t + o+ R e O
+ (K071 —7273)73 cosh(yit) — 1
0% cosh(y1t) 4 72 sinh(v1?)

where y = Yy and §; = %u2ﬁ2+ %iu(lf2np/a), 59 = tuklpo~1, 53 = %iupofl. ¢¢(u) is regular in a neighborhood of the

origin, so by Theorem 7.1.1 in Lukacs [Luk70], ¢¢(u) is also regular in the horizontal strip {u € C: p_(t) < u < p4(t)},
where

pi(t) = supE(eP¥r) < oo,
p>1
p_(t) = inf E(e!¥r) < o0 (3.3)

p<0
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Note that p4 () is not the same as py as defined in the statement of the proposition, and we will show that p_(¢) < p_
and py < p4(t) (see discussion above (3.6)).

Looking at the expressions for B, C, D on page 12 in [SZ99], we see that ¢:(u) has a pole at u = —ip if and only if

cosh(y1t) + y2 sinh(yt) = 0.
For p € (p—,p4) i.e. such that I'(p) > 0, using that 4 = I'(p) and —1/v2 = —I'(p)/(k — ppo), this equation is
satisfied if t = t*(p) = 7—11 tanhfl(%) = ﬁ tanhfl(—%). But negative t-values are physically meaningless, so
our preliminary analysis would indicate that
_ - r
) = ,%1 tanh 1(%2) = ﬁ tanh 1(_7;@—(5,30) (k — ppo < 0)
+00 (K —ppo >0)

where T*(p) = sup{t : E(ePX*) < oo} is the moment explosion time. We now first consider the case when p > 1. In this
case, if p <0 then x — ppo > 0 and for p € (p—,p+) we have that T'(p) > 0, so T*(p) = +o00. Otherwise, if p > 0, then
k —ppo < 0 if p > p* where p* = k/(po). However

. 2k — po — p\/Ak? — dkpo + o2
P =P+ = 2p0_ﬁ2 )

and using that
(26 — po)? — p?(4K* — 4kpo +0?) = 4rp*(k—po) > 0

we see that p* > p,, so it turns out that T*(p) = oo for all p € (1,p4+). An almost identical calculation shows that
T*(p) = oo for all p € (p—,0). Moreover, for p € [0, 1], from Jensen’s inequality and the martingale property we have
that E(S?) < S§ < oo for all t. Thus we have shown that 7*(p) = oo for all p € (p_,p), so the mgf of X, is given by
the analytic extension of ¢ to the imaginary axis for p € (p—,p4).

The expression for C(.) in [SZ99] is given by

1 1
C(t, 51,82,83) = —3 log[cosh(y1t) + 2 sinh(y1t) + 5/{1&]
el 7:3( sinh(v1t) ) + (K71 — 7273)73 cosh(mt) — 1
202~} cosh(y1t) + 72 sinh(v;t) n o2~} cosh(y1t) + 72 sinh(v;t)

where v1 = /20251 + k2, 7o = (k — 20233)/71 and 3 = k20 — 3202, and for u = —ip and p € (p_,p4), using
that 4 = T'(p) > 0 and cosh(;t) ~ sinh(y1t) ~ e"? as t — oo, we obtain the following large-time behavior for
C(t, §1, §2, §3)2

1 (p — 1)ph?rK>

Cltin) ~ gle+ T T = 1Y)+ o] (t - 00). (3.4)

Letting ¢ — oo and using that coth(v1t) — 1 as t — oo, we also find that

A 1

B(t, 81, 82,83) ~ —0271[73—/-@971] = 0(1) (t — 00),
o 1

D(t, 51, 82,83) ~ ;(H—’h) = 0O(1) (t = 00),

and thus constitute higher order terms as ¢ — oo, which we can ignore at the order we are interested in. Thus we have
lim 11og1E(ePXt) = V(p) (3.5)
t—oo t ’
for p € (p_,p). This means that for p € (p_,p4) and t < oo fixed, we have E(eP*X*) < oo, so

p-,
D+ - (3.6)

hs
J’_
=
IV IA
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We now consider p > p;. To this end we fix a ¢ € (1,p4); then from the monotonicity of the LP norm we have
()11 < (B,

From this and (3.5) we obtain

1 1
V(g) = liminf - logE(e?**)) < liminf - log(E(ePXt))4/?
t—oo t

t—oo t
But VK > 0, there exists a ¢(K) < p4 such that V(q) > K. Thus for ¢ sufficiently large we have

(eKtyp/a(K) < E(ePXY)

or

p
< KL
- q(K)

Thus letting K — oo we see that lim;_, %log E(epxt) = +00. A similar analysis shows that lim; . %log E(er‘) =
400 for p < p_.

1
< . . L pX:
K < htm inf ; log E(eP*?).

Differentiating V' (p) we obtain

Vip) = (2p — 1)0%° +F2(;1)2—p)p92%2f’(p) B %(pUJFF,(p))

and

o(=2kp+ (1 +2p(—1+ p?))o)
2I(p)

Nothing that I'(py) = 0, we see that V(p) and |V'(p)| — +00 as p — px so V is essentially smooth, and V' is lower
semicontinuous. V;(p) = E(ePX*) satisfies Assumption 2.3.2 in [DZ98] as t — oo, so by Lemma 2.3.9 in [DZ98] V is also
convex, so from the Gértner-Ellis Theorem (see Theorem 2.3.6 in [DZ98]) X/t satisfies the LDP with good convex
rate function I(x).

p) =

We also have the upper bound
I(l’) S p+x v p-T — V;nin < o0

where Vi, = infpe(p_,m) V(p) > —oo. But a convex function is continuous on the interior of its domain, so I is
continuous. Finally, from elementary calculations we find that the unique minimum of I occurs at z* = (I')~(0) =
V'(0). O

4. Call options and implied volatility

Let P*(A) = S%]IE(S} 14) for A € F; denote the Share measure (P* is a probability measure because S; is a martingale
by Proposition 3.1). From Girsanov’s theorem, it is easily shown that

d(—Xy) = —%det — Y dW;it,
dY; = [k(0 = Y3) + poYy] dt + odW;? (4.1)
= R0 —Y,)dt + ocdW;?,
where & = Kk — po, 0 = kb /(k — po) and AW dW;? = pdt are independent P*-Brownian motions.

Assumption 4.1. From here on we further assume that R = kK — po > 0, which ensures that Y; is mean-reverting
under P*.

From (4.1), we have the following trivial corollary of Proposition 3.2.
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Fic 1. Here we have plotted V (p) for k =1.15,6 = 0.1,0 = 0.2,p = —0.4.
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Fic 2. Here we have plotted the rate function I(x) for the same parameter values as above.
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Corollary 4.2. For k > po, —X;/t satisfies the LDP under P* ast — oo with a good convex continuous rate function
Is(x) given by the Fenchel-Legendre transform of

VS(p) = V(p;R,H,U, _10)

and Ig is continuous and attains its minimum value uniquely at —a+ = (Vg)'(0) = —3(6% + 02 /2k).

By Corollary 4.2 and the continuity of the rate function I, we obtain the following corollary, which will be used to
characterize the large-time behaviour of call option prices.

Corollary 4.3.

1
tlim n logP*(X; > at) = —Ig(x) (x >x4),
— 00

1
tli}m n logP*(X; < xt) = —Ig(x) (x <zy) .

Recall that the payoff of a European call option with strike K is E(S; — K)*, and the payoff of a European put
option with strike K is E(K — S)™.

Corollary 4.4. We have the following large-time asymptotic behaviour for put/call options in the large-time, large
log-moneyness regime:

1 .
— lim JlogE(S, — Soe™)* = Is() (x> x4),
1
— lim ~log[So — E(S, — Soc™)*] = Is(x) (¢ <z <ay),
~ Jim < log(B(Soe* — S)*) = Is() (& < ")
—00

Proof. We first assume x > x, and recall that Is(z) is non-decreasing for x > x. From Corollary 4.3, we know that
for all £ > 0 there exists a t* = t*(¢) such that for all ¢ > ¢t* we have

1
< E(S - Spe®) T = PY(X; > at) — PP(X; > at) < P (X >at) < e Us@me)/t
0
which gives the upper bound for the call price. For the lower bound we have
1 . .
S—OE(St — Spe")t = EF (1 —ee X))t = eMEF (e7% — e Xe) T, (4.2)

Observe that for any § > 0,
EF (e — e~ X0)t > EP [(e " — e X)X, pesy] > (77— eTTTOPH (=X, < —xt —6) .
Combining this with (4.2) we have

1
S—E(St —Spe™)t > et (e — e TP (=X, < —xt — 6)
0

(1—e P (=X, < —xt — 6)
(1 — e P*(X;/t >z +6/t)
(1 —e P (X, /t >z +0).

Y

Using Corollary 4.3 we get
1
lim —logE(S; — Soe™)t > Is(z + 6).
t—oo t
This holds for all 6 > 0, so taking lims_,¢ and by the continuity of Is(x) we obtain the first result that lim;_, o, % log E(S;—

Soe*)T = Is(z). The other cases follow similarly.
O
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Fic 3. Here we have plotted the asymptotic implied volatility 6(x) for Kk =1.15,0 =0.1,0 = 0.2 and p = —.8,—.6,—.4,—.2 and 0 (in blue,
light blue, purple, grey and black dashed respectively).

L NG T
03 02 01 SN~ ©

FiG 4. Here we have plotted the asymptotic implied volatility 5(x) for k = 1.15,0 = 0.1,p = —0.4 and o = .04,.08,.12,.16 and .2 (in blue,
light blue, purple, grey and black dashed respectively).

4.1. Implied volatility

Using the same proofs as in Corollary 1.7 and Corollary 2.17 in [FJ11] for the Heston model (or Theorem 14 in [JKRM13]
for a general affine model), we have the following asymptotic behaviour in the large-time, large log-moneyness regime,
where 6(zt) is the implied volatility of a put/call option with strike Spe®" for the correlated Stein-Stein model:

ot = i) = { 2@ s WIEEITE) (gl
o t—oo ! 2(2I(z) — x4+ 2+/I(2)? — I(x)x) (x € (z*,24)).
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