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Abstract. We derive a large-time large deviation principle with a convex, continuous rate function for the log stock price
under an uncorrelated stochastic volatility model. For this we use a Donsker-Varadhan-type large deviation principle
for the occupation measure of the Ornstein-Uhlenbeck process, combined with a simple application of the contraction

principle and exponential tightness. From this we derive sharp large-time asymptotics for call options and implied
volatility in the large-time, large-strike and large-time, fixed strike regimes.

1. The uncorrelated Ornstein-Uhlenbeck model with σ bounded

We work on a model (Ω,F ,P) with a filtration (Ft)t≥0 supporting two Brownian motions which satisfies the usual
conditions.

Set f(y) = σ2(y), and assume that 0 < fmin ≤ f ≤ fmax < ∞. We consider an uncorrelated stochastic volatility
model for a log stock price process Xt = logSt defined by the following stochastic differential equations{

dXt = −1
2σ

2(Yt)
2dt+ σ(Yt)dW

1
t ,

dYt = −αYtdt+ dW 2
t ,

(1)

for α > 0, X0 = x0, Y0 = y0, where W1,W2 are two independent standard Brownian motions and Y is an Ornstein-
Uhlenbeck process. We set S0 = 1 (i.e. x0 = 0) without loss of generality, because Xt − x0 is independent of x0 as the
SDEs have no dependence on x .

1.1. Large deviations for the occupation measure of the OU process. For each t > 0 and A ∈ B(R), let

(2) µt(A) =
1

t

∫ t

0

1A(Ys)ds

denote the proportion of time up to t that the sample path of Y spends in A. For each t > 0 and ω, µt(ω, .) is a
probability measure on R. Let P(R) denote the space of probability measures on R. Then µt(A) satisfies a large-time
large deviation principle in the topology of weak convergence, with a good, convex, lower semicontinuous rate function
given by

(3) IB(µ) =
1

2

∫ ∞

−∞
|∂y

√
dµ

dµ∞
(y)|2 µ∞(dy)

for µ ∈ P(R), where µ∞(y) = (απ )
1
2 e−αy2

is the unique stationary distribution for Y , i.e. N(0, 1/2α) (see Donsker&Varadhan[2],[3],
Stroock[8] and pages 367-8 in Feng&Kurtz[5]). If µ is not absolutely continuous with respect to µ∞, then IB(µ) = ∞.

Remark 1. Clearly IB(µ) attains it minimum value of zero at µ = µ∞. Moreover, any measure which makes the rate
function zero is a stationary distribution, and Y has a unique stationary distribution, so µ∞ is the unique minimizer
of IB(µ).

1.2. The Prokhorov metric. Given two measures µ and ν in P(R), the Prokhorov metric is defined by

d(µ, ν) = inf{δ > 0 : µ(C) ≤ ν(Cδ) + δ, ν(C) ≤ µ(Cδ) + δ for all closed C ∈ B(P(R))} .

P(R) then becomes a metric space (note that d(µ, ν) ≤ 1). Convergence of measures in the Prokhorov metric is
equivalent to weak convergence of measures.
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1.3. Contraction principle. We note that F : P(R) 7→ [fmin, fmax] given by

(4) F (µ) = ⟨f, µ⟩ =
∫ ∞

−∞
f(y)µ(dy)

is a bounded, continuous functional. By the contraction principle from large deviations theory, the quantity

(5) At =
1

t

∫ t

0

f(Ys)ds =

∫ ∞

−∞
f(y)µt(dy)

also satisfies the LDP, with good lower semicontinuous rate function given by

(6) If (a) = inf
µ∈P(R):⟨f,µ⟩=a

IB(µ) , a ∈ [fmin, fmax] .

Remark 2. IB(.) is non-negative and IB(µ∞) = 0, so

If (σ̄
2) = 0 ,

where

(7) σ̄2 = ⟨f, µ∞⟩ =
∫ ∞

−∞
σ2(y)µ∞(y)dy .

Moreover, µ∞ is the unique minimizer of IB, so σ̄2 is the unique minimizer of If .

Lemma 1. If (a) is convex in a on [fmin, fmax].

Proof. 0 ≤ 1
t

∫ t

0
f(Ys)ds ≤ fmax < ∞, so by Varadhan’s lemma we know that

Λ(p) = lim
t→∞

1

t
logE(ep

∫ t
0
f(Ys)ds) = sup

a∈[fmin,fmax]

[pa− If (a)] .

If we extend the domain of If to R by setting If (a) = +∞ for a /∈ [fmin, fmax], then If (a) is lower semicontinuous
on R, and Λ(p) = supa∈R[pa − If (a)] is the Fenchel-Legendre transform of If (a). Using Hölder’s inequality, we can

show that Λt(p) = 1
t logE(e

p
∫ t
0
f(Ys)ds) is convex in p for t < ∞, so the limit Λ(p) is convex. Λ(p) < pfmax < ∞

for p ∈ R, so Λ(p) is also continuous. By Lemma 2.3.9 in Dembo&Zeitouni[1], the Fenchel-Legendre transform
Λ∗(a) = supp∈R[pa− Λ(p)] = I∗∗f (a) is a good, convex rate function. Thus I∗∗f is convex and lower semicontinuous, so
I∗∗f = If .

�

2. A joint large deviation principle for (Xt/t, At)

Proposition 1. (Xt/t, At) satisfies a joint LDP as t → ∞ with good rate function I(x, a) =
(x+ 1

2a)
2

2a + If (a).

Proof. See Appendix. �

From this we obtain the following proposition:

Proposition 2. (Xt/t) satisfies the LDP as t → ∞ with a good rate function given by

I(x) = inf
a∈[fmin,fmax]

[
(x+ 1

2a)
2

2a
+ If (a)] ≤

(x+ 1
2 σ̄

2)2

2σ̄2

and x = − 1
2 σ̄

2 is the unique minimizer of I.

Proof. The LDP with a good rate function just follows from the contraction principle. Setting a = σ̄2 defined in (7)
and using that If (σ̄

2) = 0, we see that I(− 1
2 σ̄

2) = 0. Moreover, for any x ̸= − 1
2 σ̄

2, we cannot find an a ∈ [fmax, fmax]

which simultaneously makes
(x+ 1

2a)
2

2a and If (a) vanish, so = − 1
2 σ̄

2 is the unique minimizer. �

Lemma 2. I(x) is convex and continuous on R.

Proof. Define G : R× R+ 7→ R+ by G(x, a) =
(x+ 1

2a)
2

2a . Then the determinant of the Hessian D2G is zero everywhere,
so the Hessian is positive semi-definite; thus G is convex in (x, a). If (a) is convex in a (and (x, a)), so I(x, a) =
G(x, a) + If (a) is also convex in (x, a). The interval C = [fmin, fmax] is a convex set, so I(x) = infa∈C I(x, a) is also
convex. From the previous proposition, we know that I(x) is finite for all x ∈ R, hence I(x) is also continuous on any
open interval. �
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Remark 3. For non-zero correlation and/or unbounded σ, the approach outlined here will not work. However, we
can transform the problem to a small-noise, fast mean-reverting regime, which is the same scaling used in the recent
paper by Feng et al. [4], aside from the fact that the drift of the log Stock price process is not small in this case. This
problem then falls into the class of homogenization and averaging problems for nonlinear HJB type equations, where
the fast volatility variable lives on a non-compact space. The Feng et al. argument based on viscosity solutions can
be easily adapted to the large-time regime, using Bryc’s lemma combined with exponential tightness to prove a large
deviation principle. The leading order term is the unique viscosity solution to a HJB equation where the Hamiltonian
is given in terms of the limiting log mgf for the integrated variance; this will be dealt with in a sequel article. For the
well known SABR model with β = 1, we can derive large-time asymptotics for the correlated case using the Willard
mixing formula, see Forde[6].

2.1. Large-time behaviour of the distribution function. I(−1
2 σ̄

2) = 0 so from the convexity and continuity of

I(x), I(x) is non-decreasing for x > − 1
2 σ̄

2 and non-increasing for x < − 1
2 σ̄

2. From this we obtain the following:

Corollary 1.

lim
t→∞

1

t
logP(Xt > xt) = I(x) (x > −1

2
σ̄2) ,

lim
t→∞

1

t
logP(Xt > x) = I(0) (x ∈ R) .

Proof. The first result just follows from the LDP and the continuity of I. For the second result, we first assume x > 0.
By Proposition 2, we know that for all ϵ, δ > 0, there exists a t∗ = t∗(δ, ϵ, x) such that for all t > t∗ we have

e−(I(δ)+ϵ)t ≤ P(
Xt − x0

t
> δ) ≤ P(Xt − x0 > x) = P(

Xt − x0

t
>

x

t
) ≤ P(

Xt − x0

t
> 0) ≤ e−(I(0)−ϵ)t.

Taking the limit as t → ∞, we obtain −I(δ) ≤ lim inft→∞
1
t logP(Xt > x) ≤ lim supt→∞

1
t logP(Xt > x) ≤ I(0), and

we then just let δ → 0 and use the continuity of I(x) at x = 0. We proceed similarly for x < 0. �

3. Call option prices

Let P∗(A) = 1
S0

E(St1A) for A ∈ Ft denote the Share measure.

Lemma 3. (Xt/t) satisfies the large deviation principle under P∗ with rate function I(−x).

Proof. From a simple Girsanov change of measure, we see that −Xt satisfies the same SDEs under P∗ as Xt does under
P. The result then follows from Proposition 2. �

Proposition 3. For the OU model defined in (1), we have the following large-time asymptotic behaviour for put/call
options

− lim
t→∞

1

t
logE(St − S0e

xt)+ = I(−x) (x >
1

2
σ̄2) ,

− lim
t→∞

1

t
log(S0 − E(St − S0e

xt)+) = I(−x) (|x| < 1

2
σ̄2) ,

− lim
t→∞

1

t
log(E(S0e

xt − St)
+) = I(−x) (x < −1

2
σ̄2) ,

− lim
t→∞

1

t
log(S0 − E(St − S0e

x)+) = I(0) (x ∈ R) .(8)

Proof. We first assume x > 1
2 σ̄

2, and note that I(−x) is non-decreasing for x > 1
2 σ̄

2. From Lemma 3, we know that
for all ϵ > 0 there exists a t∗ = t∗(ϵ) such that for all t > t∗ we have

1

S0
E(St − S0e

xt) = P∗(Xt > xt)− extP(Xt > xt) ≤ P∗(Xt > xt) ≤ e−(I(−x)−ϵ)/t

which gives the upper bound for the call price. For the lower bound we have

1

S0
E(St − S0e

xt)+ = EP∗
(1− exte−Xt)+ = extEP∗

(e−xt − e−Xt)+ .(9)

From a picture, we see that for any random variable X on R, E(ek − eX)+ ≥ (ek − ek−δ)P(X < k− δ). In this case we
set X = −Xt and k = −xt to obtain

EP∗
(e−xt − e−Xt)+ ≥ (e−xt − e−xt−δ)P∗(−Xt < −xt− δ) .
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Combining this with (9) we have

1

S0
E(St − S0e

xt)+ ≥ ext(e−xt − e−xt−δ)P∗(−Xt < −xt− δ) = (1− e−δ)P∗(−Xt < −xt− δ)

≥ e−(I(−x−δ)+ϵ)t ,

and the first result follows from the continuity of I(x). The other cases follow similarly. �
Remark 4. Using the same proofs as in Corollary 1.7 and Corollary 2.17 in Forde&Jacquier[7] for the Heston model,
we have the following large-time asymptotic behaviour for the implied volatility σ̂t(x) of a put/call option with strike
S0e

x

lim
t→∞

σ̂2
t (xt) =

{
2(2I(x)− x− 2

√
I(x)2 − I(x)x) |x| > 1

2 σ̄
2 ,

2(2I(x)− x+ 2
√

I(x)2 − I(x)x) (|x| < 1
2 σ̄

2),

lim
t→∞

σ̂2
t (x) = 8I(0) .

We omit the details for the sake of brevity.
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Appendix A. Proof of Proposition 1

Let Zt = Xt/t. We first note that (Zt, At)
d
=(WtAt − 1

2At, At). We first assume x+ 1
2a > 0. Now choose δ so that

0 < δ < x+ 1
2a. Then

P(|Zt − x| < δ√
2
, |At − a| < δ√

2
) ≤ P(∥(Zt, At)− (x, a)∥ < δ)

≤ P(|Zt − x| < δ, |At − a| < δ) .

From the Gärtner-Ellis theorem, we can easily verify that
W 1

at− 1
2at

t satisfies the LDP as t → ∞ with convex rate

function
(x+ 1

2a)
2

2a . Then for any ϵ > 0, conditioning on At and using the LDP for At and the LDP for
W 1

at− 1
2at

t , we see
that there exists a t = t∗(ϵ, δ) such that

P(|Zt − x| < δ, |At − a| < δ) ≤ e−t[−ϵ+infy∈Bδ(x)

(y+1
2
(a−δ))2

2(a+δ)
] e−t[−ϵ+infa1∈B̄a(δ) If (a1)] .

Then

lim sup
t→∞

1

t
logP(|Zt − x| < δ, |At − a| < δ) ≤ − inf

y∈Bδ(x)

(y + 1
2 (a− δ))2

2(a+ δ)
− inf

a1∈B̄a(δ)
If (a1) ,

and by the lower semicontinuity of If (a) we have

lim
δ→0

lim sup
t→∞

1

t
logP(|Zt − x| < δ, |At − a| < δ) ≤ −[

(x+ 1
2a)

2

2a
+ If (a)] .

Using a similar argument for the lower bound, we replace the limsup here by a genuine limit, so (Zt, At) satisfies the

weak LDP with rate function
(x+ 1

2a)
2

2a + If (a). The rate function If (a) is good, so (At) is exponentially tight; hence
for all R > 0, a > 0, there exists a compact set Ka ⊂ R such that

lim sup
t→∞

1

t
logP((Zt, At) ∈ [−R,R]×Kc

a) ≤ lim sup
t→∞

1

t
logP(At ∈ Kc

a) ≤ −a ,

so (Zt, At) is exponentially tight, hence (Zt, At) satisfies the full LDP and the rate function is good. We proceed
similarly for x+ 1

2a ≤ 0.
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