
The QGARCH(1,1) model

The QGARCH(1,1) model is a well known discrete-time model defined as

Rt =
√
Vt Zt

Vt = ω + αR2
t−1 + βVt−1 + γRt−1 (1)

for t = 1, 2... (e.g. days) where Rt = (St − St−1)/St−1 is the t’th stock price return (note Rt ≥ −1 since St ≥ 0)
and ω, α, β > 0, and Zt is a sequence of i.i.d random variables with zero mean and variance σ2, e.g. N(0, 1) or a
student t-distribution with ν degrees of freedom if we want fatter tails for which σ2 = ν

ν−2 , so we need ν > 2. Since
we can re-write the model as

Vt = Vt−1 + (1− β)(ω̄ − Vt−1) + αR2
t−1 + γRt−1 (2)

where ω̄ = ω
1−β , we see that 1− β controls the mean reversion speed for V , and ω̄ is level around which V mean

reverts. α controls the extent of volatility clustering, i.e. past large volatility giving rise to large future volatility
and vice versa, and γ is a skew term which captures that squared volatility Vt tends to increase if Rt−1 < 0 since
usually γ < 0 as well so γRt−1 > 0 (the so-called leverage effect). γ < 0 also allows the model to produce negatively
skewed non-symmetric implied volatility smiles for European options which are seen in practice, particularly for
Index and Equity options. The original Engle&Bollerslev GARCH model from 1986 has γ = 0, so the model above
is sometimes known as the asymmetric GARCH model.

If we now instead say that Vt+1 is Vt, then we can re-write the model in the Euler-scheme type form

St = St−1 + St−1

√
Vt−1 Zt

Vt = Vt−1 + (1− β)(ω̄ − Vt−1) + αR2
t + γRt

= Vt−1 + (1− β)(ω̄ − Vt−1) + αVt−1 Z
2
t + γ

√
Vt−1 Zt (3)

then we see that (St, Vt) is discrete-time Markov process, since the distribution of St, Vt at time t− 1 depends
only on (St−1, Vt−1) and does not require any further history of these two processes (note our original Vt is now
Vt−1 here).

Taking expectations in (1), we see that

E(Vt) = ω + αE(R2
t−1) + βE(Vt−1) + γE(Rt−1) .

Using the tower property of conditional expectations, we can further re-write this as

E(Vt) = ω + αE(E(R2
t−1)|Vt−1) + βE(Vt−1) + γE(E(Rt−1|Vt−1))

= ω + αE(σ2Vt−1) + βE(Vt−1) + 0 (4)

where we have also used that E(R2
t−1|Vt−1) = E(Vt−1Z

2
t−1|Vt−1) = Vt−1E(Z2

t−1|Vt−1) = Vt−1E(Z2
t−1) = Vt−1σ

2. For
Vt to have a stationary distribution, i.e. for Vt to have the same distribution for all t, this clearly requires that
E(Vt) = E(Vt−1), so we can further re-write (4) as

E(Vt) = ω + ασ2E(Vt) + βE(Vt) .

and

E(R2
t ) = E(E(R2

t |Vt)) = E(Vt) .

Re-arranging, we see that

E(Vt) =
ω

1− ασ2 − β
.

Since Vt cannot be negative, we must have that ασ2 + β < 1, which we call the stationarity condition. If V
starts at time zero, then

E(Vt) =
1

1− ασ2
(ω + βE(Vt−1))

⇒ E(Vt)− V̄ =
1

1− ασ2
(ω + βE(Vt−1))− V̄ =

β

1− ασ2
(E(Vt−1)− V̄ )

i.e. a linear recurrence relation of the form rt = art−1, with solution rt = E(Vt)− V̄ = ( β
1−ασ2 )t(V0 − V̄ ).
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Moreover

Vt = ω + αR2
t−1 + βVt−1 + γRt−1 ≥ ω + αR2

t−1 + γRt−1

and (using basic calculus) the right-hand side is ≥ 0 for all Rt−1 if ω ≥ γ2

4α . This is known as the positivity
condition.

Let

E(R4
t ) = E(E(R4

t |Ft−1) = E(V 2
t E(Z4

t |Ft−1)) = E(Z4
t )E(V 2

t ) . (5)

For γ = 0 and σ = 1, we have

E(V 2
t ) = (3 +Kε)E(V 2

t )α2 + 2E(R2
t−1Vt−1)αβ + E(V 2

t )β2 + 2E(Vt)αω + 2E(Vt)βω + ω2

= (...) + 2αβE(Vt−1Et−2(R2
t−1))

= (...) + 2αβE(V 2
t )

Re-arranging the final expression, we see that

E(V 2
t ) =

ω(2E(Vt)(β + α) + ω

1− ((3 +Kε)α2 + β2 + 2αβ)
.

if the denominator is positive.

Quasi Maximum likelihood estimates for the GARCH parameters and asymptotic
normality

If V1 is fixed and known and we start the model at time zero rather than t = −∞, the joint density of R1, ..., Rn
can be easily expressed as a product of conditional densities of the returns:

L = p(R1) p(R2|R1) p(R3|R1, R2)... = p(R1) p(R2|V2)... p(Rn|Vn) =

n∏
j=1

f(
Rj√
Vj

)
1√
Vj

= p(R1) p(R2|V2)... p(Rn|Vn) =

n∏
j=1

f(
Rj√
Vj

)
1√
Vj

where f is the density of each Zt in (1). This is true because

P(Rj ≤ x|Vj) = P(Zj ≤
x√
Vj
|Vj) = F (

x√
Vj

)

where F is the distribution function of Zt. Using observed values for R1, ..., Rn, and given parameter values for the
model, the values of Zj =

Rj√
Vj

are known as the residuals and L is the likelihood function of R1, ..., Rn. We can

then maximize L over all admissible parameter combinations to compute MLEs for the model parameters ω, α, β, γ,
and the parameter(s) for the distribution of each Zt (this is conceptually similar to Part 2).

Then the log likelihood is

`n(θ) =

n∑
t=1

log f(
Rt√
Vt

)− 1

2
log Vt

and recall that Vj actually depends on R1, ..., Rj−1 and the model parameters which we collectively denote by θ.
Then the Fisher information matrix when the residuals are i.i.d. N(0, 1) for the true stationary GARCH model is

I(θ) = −E(
∂2

∂θ2
`n(θ))2) =

n∑
t=1

E(−−2R2
t + Vt(θ)

2Vt(θ)3

∂Vt(θ)

∂θi

∂Vt(θ)

∂θj
+ (R2

t − Vt(θ))Vt(θ)
∂2Vt(θ)

∂θi∂θj
)

=

n∑
t=1

E(
1

2Vt(θ)2

∂V1(θ)

∂θi

∂V1(θ)

∂θj
)

= nE(
1

2V1(θ)2

∂V1(θ)

∂θi

∂V1(θ)

∂θj
) (6)

as n→∞, using the stationarity of V , where we have also used the tower property in the final line. For this to be
useful we need to be able to sample from the stationary density for Vt, which we can approximate by considering n
large for the model which starts at zero instead of −∞. Then it can be shown that θ̂n is consistent and

√
n(θ̂n− θ)

tends to a multivariate N(0, I(θ)−1) random variable as n → ∞, so intuitively we want parameters in the model

such that ∂V1(θ)
∂θi

are larger.
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Computing the stationary distribution for V

We note that

Vt ∼ ω + αV Z + βV ′t = ω + (αZ + β)V ′ = ω + AV ′t

where A = αZ2 + β, and V ′t ∼ Vt. Conditioning on A = a, this implies that the stationary density fV (v) for V
satisfies:

fV (v) =

∫ ∞
β

fV (
v − ω
a

)
1

a
pA(a)da (7)

where pA(a) is density of A, and note A is just a linear transformation of a χ2 random variable when Z ∼ N(0, 1).
(7) is a linear Fredholm integral equation for fV (v), which in principle can be solved by discretizing it and
solving a linear system of equations.

Goodness-of-fit tests for the residuals

If e.g. we assume Zt ∼ N(0, 1), we can then perform standard normality tests like Kolmogorov Smirnov,
Shapiro-Wilk, Jarque-Bera or Andersen-Darling to test whether the Zt values are indeed i.i.d. Normals.
Otherwise, if we use a different distribution for Zt (e.g. a t-distribution with ν degrees of freedom which will give
the returns fatter tails), we have to transform these back Z values to Normal RVs before applying these normality
tests, using inverse cdfs.

Estimating V0 from the stock price history

If we assume γ = 0 for simplicity, then iterating the definition of Vt we see that

Vt = ω + βVt−1 + αR2
t−1

= ω + β(ω + βVt−2 + αR2
t−2) + αR2

t−1

= ω + β(ω + β(ω + βVt−3 + αR2
t−3) + αR2

t−2) + αR2
t−1

= ω(1 + β + β2 + ...) +
α

β

∑
τ=1

βτR2
t−τ = ω̄ +

α

β

∞∑
τ=1

e−bτR2
t−τ (8)

where b is defined by β = e−b and ω̄ is defined above, and note the first term on the right-hand side is the mean
reversion level from above. So we see that the effect of past returns on volatility decays exponentially, and re-doing
this computation with γ 6= 0, we find that the last line just changes to

Vt =
ω

1− β
+
α

β

∞∑
τ=1

e−bτR2
t−τ +

γ

β

∞∑
τ=1

e−bτRt−τ .

In particular, we also see that

V0 = ω̄ +
α

β

∞∑
τ=1

e−bτR2
−τ +

γ

β

∞∑
τ=1

e−bτR−τ

so we can estimate V0 by truncating this sum in practice rather than fitting V0 as an additional free parameter for
the MLE maximization computation described above, since V0 is already fixed by the history of the returns.

Stochastic volatility as the diffusive limit of QGARCH

Consider the following variant of the model above:

St = St−∆t + St−∆t

√
Vt−∆t Zt

Vt = Vt−∆t + κθ∆t +
η√
∆t

(R2
t − Vt−∆t∆t) − κVt−∆t∆t + γRt

= Vt−∆t + κ(θ − Vt−∆t)∆t +
η√
∆t

Vt−∆t(Z
2
t −∆t) + γ

√
Vt−∆tZt

= Vt−∆t + κ̄(θ̄ − Vt−∆t)∆t +
η√
∆t

R2
t + γRt
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for some κ̄, θ̄, with Z1, Z2, ... i.i.d. as above and Vt−1 here is our old Vt, and now assume Var(Zt) = ∆t and
η = O(1), and impose that ν > 4 so E(Z4

i ) <∞, and from the final line we see that Vt is still of the QGARCH(1,1)
form in (3). Then as ∆t→ 0, the model tends to the mean-reverting Markov stochastic volatility model:

dSt = St
√
VtdWt

dVt = κ(θ − Vt)dt + 2ηVtdBt + γ
√
VtdWt (9)

where W and B are standard independent Brownian motions, so we see that the specific form of the distribution
of the Zt’s does not show up in the ∆t → 0 limit and the independent Brownian motion B appears almost by
magic. When η is larger, the implied volatility smile will be more U -shaped as a function of strike K, and will be
symmetric as a function of x = log K

S0
if γ = 0. If ν is smaller, the smile may just be monotonically decreasing as a

function of K over relevant strike ranges.

The limiting model in (9) is hybrid of the well known Hull-White and Heston models (the well known Heston
model has a

√
Vt term in it). To see why this is true, we first note that

1√
∆t

[nt]∑
i=1

(Z2
i −∆t) =

√
n

[nt]∑
i=1

(∆tZ̃2
i −∆t) =

1√
n

[nt]∑
i=1

(Z̃2
i − 1) (10)

where Z̃i = Zt/
√

∆t ∼ N(0, 1), and that Var(Z̃2
i − 1) = E((Z̃2

i − 1)2) = 3− 2 + 1 = 2.

We now recall Donsker’s theorem. Let Xi be a sequence of i.i.d. random variables with E(Xi) = 0 and
Var(Xi) = 1, and let Sn =

∑n
i=1Xi. Now consider the random function:

Wn
t =

S[nt]√
n

(t ∈ [0, 1])

where [nt] denotes the largest integer less than or equal to nt. Then by the Central Limit Theorem, Wn
1 = Sn√

n

tends to an N(0, 1) random variable as n → ∞. More precisely, limn→∞ E(F (Wn
1 )) = E(F (Z)) for any bounded

continuous function F (this is known as weak convergence). Donsker’s theorem, states that the random function
Wn
t tends weakly to a random function which is a Brownian motion as n→∞. This shows that we can numerically

approximate Brownian motion using Xi’s with any distribution with finite variance. Thus (10) falls exactly under
the framework of Donsker’s theorem, aside from Z̃2

i − 1 having a variance of 2 not 1, which is why there is a factor
of 2 in (9).

Changing from P to Q measure

If the Zt’s have a non-zero density under P, then the Zt’s can have any non-zero density under Q (does not have
to be equal to the original density), so long as EQ(Zt) = 0, then S will still be a martingale under Q, which is
equivalent to P since both densities are non-zero by assumption.

Intraday dynamics consistent with the QGARCH model

The t-distribution is infinitely divisible which means a random variable Z with this distribution can be written as
a sum of n i.i.d random variables Zni , for any n. The characteristic function E(eiuZ

n
i ) of Zni is then φ(u)1/n where

φ(u) = E(eiuZ). This gives us a way to extend the model from modelling daily returns to intraday returns with n
i.i.d residuals per day, keeping V constant within any given day.

Bayesian analysis

If we set X = (R1, ..., Rn) and θ = (α, β, γ, ν), then from Bayes formula, we know that

p(θ|X) =
p(X|θ) p(θ)

p(X)

where the p’s refer to densities or conditional densities here. p(X) does not depend on θ, and if assume a uniform
prior p(θ) = const. for θ on some finite hypercube in R4 (and zero elsewhere), then

p(θ|X) = const.× p(X|θ)

so the conditional density of θ given X is proportional to the likelihood function p(X|θ), and by integrating in the
other 3 parameters we can compute e.g. the marginal density of α, β, γ or ν given X. This is easier if e.g. we fix
γ = 0 and fix 1− β to its lower bound, so we only have two free parameters.
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Power kernel model

We can modify the model as follows:

Rt =
√
Vt Zt

Vt = ω + c

∞∑
τ=1

τ−αR2
t−τ + γ

∞∑
τ=1

τ−α2Rt−τ

for α, α2 > 2 (add mean reversion?) which corresponds to power decay, and again we have to take care to ensure
positivity and stationarity. In this case, using the same tower law argument as above

E(Vt) = ω + c

∞∑
τ=1

τ−αE(R2
t−τ ) = ω + c

∞∑
τ=1

τ−αE(E(R2
t−τ |Vt−τ ) = ω + cσ2

∞∑
τ=1

τ−αE(Vt−τ ) .

If V is stationary, then

E(Vt) = ω + cσ2
∞∑
τ=1

τ−αE(Vt) = ω + cσ2E(Vt)ζ(α)

which we can re-arrange as E(Vt) = ω
1−cσ2ζ(α) , where ζ(α) =

∑∞
n=1 n

−α denotes the zeta function, so clearly a

necessary condition for stationarity is that cσ2ζ(α) < 1.

If α = α2, then can re-write as

Vt =

∞∑
τ=1

τ−α(ω̄ + cR2
t−τ + γRt−τ )

where ω̄ = ω
ζ(a) , so we have essentially the same positivity condition as before ω̄ ≥ γ2

4c . This is a discrete-time

version of the rough Heston model.

Quadratic Rough Heston-type model

We can also generalize to a quadratic rough Heston-type model:

Vt = ω + c

∞∑
τ=1

τ−αR2
t−τ + b(

∞∑
τ=1

τ−αRt−τ − a)2 + γ

∞∑
τ=1

τ−αRt−τ .

Then again assuming stationarity, we now see that

E(Vt) = ω + cσ2ζ(α)E(Vt) + bE(

∞∑
τ=1

τ−αRt−τ − a)2

= ω + cσ2ζ(α)E(Vt) + bE(

∞∑
τ=1

τ−αRt−τ )2 + a2)

= ω + cσ2ζ(α)E(Vt) + b(ζ(2α)E(Vt) + a2)

using that E(RiRj) = E(RiE(Rj |Ri, Vj)) = 0 for i < j, so the stationarity condition now reads as cσ2ζ(α) +
b(ζ(2α) < 1 .

Numerical results

Below we compute MLEs and apply the Kolmogorov Smirnov, Shapiro-Wilk and Jarque-Bera normality tests on
the (transformed) residuals implied by the MLEs for the model in (1) using daily prices, with a 1yr/3yr/1yr test
window (the initial 1yr window is used to compute the V0 for the middle window from the initial 1yr history of
returns; the middle 3yr period is used for in-sample (i/s) testing, and final year used for out-of-sample testing,
all three periods are consecutive with no gaps/overlap), ending 11/08/2023. Although the fits are very good, the
sample variance of the MLEs using synthetic paths with the fitted parameters are much higher than we would
ideally like.
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MLEs/p-vals α β γ ν KS i/s SW i/s JB i/s KS o/s SW o/s JB o/s
EUR/USD 0.0293 0.962 -5.405e-05 8.684 0.835 0.870 0.706 0.912 0.714 0.643
GBP/USD 0.0303 0.932 -0.000252 6.192 0.966 0.836 0.712 0.119 0.224 0.279
USD/JPY 0.0830 0.875 -0.000299 5.9611 0.292 0.476 0.352 0.0603 0.0907 0.229

AMZN 0.03482 0.9420 -0.000505 5.008 0.401 0.811 0.951 0.560 0.607 0.570
BRK-B 0.103 0.868 -0.00103 8.929 0.168 0.921 0.950 0.611 0.676 0.984
INTC 0.0280 0.943 -5.940e-05 3.914 0.375 0.0634 0.0404 0.229 0.262 0.236
AZN 0.0496 0.904 -0.000897 4.153 0.247 0.587 0.428 0.103 0.206 0.195
N225 0.0982 0.856 -0.00129 6.271 0.281 0.443 0.349 0.0713 0.236 0.354
HSI 0.06222 0.898 -0.000834 5.108 0.491 0.226 0.358 0.530 0.121 0.161

To fix SPX historical prices well, we need a skewed t-distribution for the residuals
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