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Abstract

We derive a closed-form expression for the stock price density under the modified SABR model (see section 2.4
in Islah[Isl09]) with zero correlation, for β = 1 and β < 1, using the known density for the Brownian exponential
functional for µ = 0 given in Matsumoto&Yor[MY05], and then reversing the order of integration using Fubini’s
theorem. We then derive a large-time asymptotic expansion for the Brownian exponential functional for µ = 0,
and we use this to characterize the large-time behaviour of the stock price distribution for the modified SABR
model; the asymptotic stock price “density” is just the transition density p(t, S0, S) for the CEV process, integrated
over the large-time asymptotic “density” 1

t
e−1/2t associated with the Brownian exponential functional (re-scaled),

as we might expect. We also compute the large-time asymptotic behaviour for the price of a call option, and we
show precisely how the implied volatility tends to zero as the maturity tends to infinity, for β = 1 and β < 1.
These results are shown to be consistent with the general large-time asymptotic estimate for implied variance given
in Tehranchi[Tehr09]. The modified SABR model is significantly more tractable than the standard SABR model.
Moreover, the integrated variance for the modified model is infinite a.s. as t → ∞, in contrast to the standard
SABR model, so in this sense the modified model is also more realistic.

1 Introduction

Throughout this paper we let B = {Bt, t ≥ 0} denote a one-dimensional Brownian motion started at zero defined on
a probability space (Ω,F ,P), and B

(µ
t = {Bt + µt, t ≥ 0} denote the corresponding Brownian motion with constant

drift µ ∈ R. We consider the exponential functional

A
(µ)
t =

∫ t

0

e2B(µ)
s ds ,

which is the time-integral of geometric Brownian motion. This additive functional plays an important role in several
domains, e.g. in pricing arithmetic Asian call options, as the time-change for the SABR and Hull-White stochastic
volatility models, and for Brownian motion on the upper half plane under the hyperbolic metric. This fact motivates
detailed studies about this functional.

In this article, we only consider the case µ = 0, for which the analysis is a lot cleaner. At fixed finite time,
only an integral expression is known for the density of At = A

(µ)
t . This is obtained as a by-product of the well

known Bougerol identity, which states that WAt

d= sinh(Wt), where (Wt) is another Brownian motion, independent of
B (see [AG97],[CMY98],[MY05] for details). Gulisashvili&Stein[GS06],[GS07] derive sharp tail estimates for Aµ

t use
saddlepoint methods, and they use this to derive tail estimates for the stock price under the Hull-White stochastic
volatility model, and arithmetic Asian call options under the Black-Scholes model. Aµ

t is also the time-change for the
SABR and Hull-White stochastic volatility models with zero correlation. The small-time asymptotics for the SABR
model are well documented (see e.g. [Forde09], [HL09], [Laur08]).

In section 2, we introduce the modified uncorrelated SABR model for β = 1 as a stochastic volatility model with
the same law as an arithmetic Brownian motion evaluated at an independent time given by the Brownian exponential
functional. The modified model corresponds to µ = 0 (and for µ = 0 Bougerol’s identity holds); for this reason the
modified model is far more tractable then the standard SABR model for ρ = 0. Using Fubini’s theoerem, we derive
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a semi-closed form expression for the log stock price density by performing the inner integration analytically. We
perform a similar analysis for β < 1 by integrating the transition density for the CEV process over the density of At

and then using Fubini’s theorem. In section 3 we concentrate on large-time asymptotics; we first derive a full asymptotic
expansion for the density of At which sharpens a result in Matsumoto&Yor[MY05] where the leading order term is
given. Using the dominated convergence theorem, we then characterize the large-time asymptotic behaviour of the
stock price density at leading order for the modified SABR model with β = 1 and β < 1. In both cases we find that the
re-scaled asymptotic “density” is not a true density function, and is obtained by integrating the density of arithmetic
Brownian motion (respectively the CEV process) over the asymptotic re-scaled “density” for At, as we might expect.
Using an alternate representation for the price of a call option, we also derive large-time asymptotics for call options
prices, and we show precisely how the implied volatility for a fixed-strike put or call option tends to zero as the maturity
tends to infinity; specifically, we find that the dimensionless implied variance is O(log t) as t →∞. We show that these
large-time estimates for implied volatility are consistent with the main result (Theorem 3.1) in Tehranchi[Tehr09].
In particular, we see that the large-time behaviour for call options and implied volatility is qualitatively different
to the large-time asymptotics obtained for the Heston model in Forde,Jacquier&Mijatovic[FJM09] using Laplace’s
method for contour integrals. For the Heston model, the difference between the initial stock price and the call price
is exponentially small as t → ∞, and the implied volatility tends to a constant; for the modified uncorrelated SABR
model, the difference is O(t−

1
2 ) and the implied volatility tends to zero.

2 The modified SABR model

2.1 The case β = 1

We first consider the modified uncorrelated SABR model defined in section 2.4 in [Isl09] for β = 1
{

dXt = − 1
2Y 2

t dt + YtdWt ,
dYt = 1

2α2Ytdt + αYtdBt ,

where Xt = log St is a log stock price process, X0 = x0, Y0 = y0 > 0, and W and B are two independent Brownian
motions. Note that Yt = y0e

αBt . This model is a special case of the well known Hull-White stochastic volatility model
(see Gulisashvili&Stein[GS06]). From the scaling property of Brownian motion we see that the integrated variance∫ t

0
Y 2

s ds satisfies ∫ t

0

Y 2
s ds = y2

0

∫ t

0

e2αBsds
d=

y2
0

α2

∫ α2t

0

e2Budu ,

and the density of At =
∫ t

0
e2Bsds is obtained as a by-product of Bougerol’s identity1

f(u, t) =
1√

2πu3

1√
2πt

∫ ∞

−∞
cosh(ξ) e−(cosh ξ)2/2u−(ξ+iπ/2)2/2tdξ (1)

(see Theorem 4.4 in [MY05]).

Proposition 2.1 The density pt(x) of Xt − x0 is given by

pt(x) =
σe−

1
2 x

√
2πα2t

∫ ∞

−∞
cosh(ξ)

K1( 1
2

√
x2 + σ2(cosh ξ)2)

2π
√

(x2 + σ2(cosh ξ)2)
e−(ξ+iπ/2)2/2α2tdξ , (2)

where
σ = y0/α (3)

and K1(.) is the modified Bessel function of the second kind of order 1 (see page 374 in Abramowitz&Stegun[AS72] for
a definition).

Proof. Xt is identical in law to an arithmetic Brownian motion with volatility σ and drift − 1
2σ2 evaluated at the

independent time Aα2t. Using this relation, we can compute the density pt(x) of Xt − x0 as

pt(x) =
∫ ∞

0

1
σ
√

2πu
e−(x+ 1

2 σ2u)2/2σ2uf(u, α2t)du .

=
∫ ∞

0

1
σ
√

2πu
e−(x+ 1

2 σ2u)2/2σ2u 1√
2πu3

1√
2πα2t

∫ ∞

−∞
cosh(ξ) e−(cosh ξ)2/2u−(ξ+iπ/2)2/2α2tdξdu .

1Bougerol’s identity states that
∫ t
0 eBsdWs, sinh(Bt) and WAt are identical in law; note that this is only valid for driftless Brownian

motion i.e. µ = 0.
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Figure 1: Here we have plotted the density of At for t = 1.
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Figure 2: Here we have plotted the log Stock price density for the modified SABR model with S0 = 1, y0 = 1, α =
1, β = 1.

Using Fubini’s theorem to interchange the order of integration2 and evaluating the integral over u analytically, we
obtain (2).

Remark 2.1 We have effectively removed a dimension of integration in the formula in [Isl09] for the case for the
modified SABR model with β = 1.

2.2 The case β < 1

The constant elasticity of variance(CEV) diffusion process of Cox[Cox75] is defined by the SDE

dSt = δ Sβ
t dWt (4)

with β ∈ (0, 1), δ > 0. The origin is an exit boundary for β ∈ ( 1
2 , 1), and a regular boundary for β ≤ 1

2 , which we
specify as absorbing to ensure that (St) is a martingale. Infinity is a natural, non-attracting boundary. The transition
density for the CEV process is given by

p(t, S0, S) =
S−2β̄− 3

2 S
1
2
0

δ2|β̄|t exp(−S−2β̄
0 + S−2β̄

2δ2β̄2t
)Iν(

S−β̄
0 S−β̄

δ2β̄2t
) (S > 0) , (5)

2see Appendix A for justification.
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where β̄ = β−1, ν = 1
2|β̄ |, and Iν(.) is the modified Bessel function of the first kind (see page 374 in Abramowitz&Stegun[AS72]

for a definition, and also Davydov&Linetsky[DavLin01]). Combining the CEV model with uncorrelated stochastic
volatility, the modified SABR model is defined by the stochastic differential equations

{
dSt = Sβ

t YtdWt ,
dYt = 1

2α2Ytdt + αYtdBt

with dWtdBt = 0, Y0 = y0 > 0. Equivalently, we can write the dynamics of the model as
{

dSt = δSβ
t YtdWt ,

dYt = 1
2α2Ytdt + αYtdBt

(6)

with Y0 = 1, δ = y0.

Proposition 2.2 The density pt(S) of St is the CEV transition density integrated over the distribution of the integrated
variance for y0 = 1:

pt(S) =
A√

2πα2t

∫ ∞

−∞
cosh(ξ) [ c1 2F1(

3
4
−1

4
γ,

1
4
(3+γ),

1
2
,
g(ξ)2

4z2
0z2

) + c2 g(ξ) 2F1(
5
4
−1

4
γ,

1
4
(5+γ),

3
2
,
g(ξ)2

4z2
0z2

)] · e− (ξ+iπ/2)2

2α2t dξ ,

where γ = 1
|β| and

A = β̄2δ
√

S0z0z
[√

π S
3
2 Γ(

1
4
(−1 + γ))Γ(

1
4
(1 + γ))z2

]−1
,

g(ξ) = z2
0 + (1 + z2

0 β̄2δ2(cosh ξ)2)z2 ,

c1 = −z0z Γ(
1
4
(γ − 1)) Γ(

1
4
(3 + γ)) sin(

1
4
π(γ + 1)) ,

c2 = Γ(
1
4
(1 + γ)) Γ(

1
4
(5 + γ)) sin(

1
4
π(1− γ)) (7)

and 2F1(a, b, c, z) is the hypergeometric function (see page 556 in Abramowitz&Stegun[AS72] for a definition), δ = y0/α,
z = Sβ̄, z0 = Sβ̄

0 .

Proof. St is identical in law to the CEV process with δ = y0/α evaluated at the independent time Aα2t. Using this
relation, we can compute the density pt(S) of St by setting δ = y0/α and then computing

pt(S) =
∫ ∞

0

p(u, S0, S)f(u, α2t)du

=
∫ ∞

0

p(u, S0, S)
1√

2πu3

1√
2πα2t

∫ ∞

−∞
cosh(ξ) e−(cosh ξ)2/2u−(ξ+iπ/2)2/2α2tdξdu . (8)

Using Fubini’s theorem to interchange the order of integration3 and evaluating the integral over u analytically, we
obtain (7).

Corollary 2.3 To price call options we just integrate the call payoff (S −K)+ over the density pt(S) in (7)

E(St −K)+ =
∫ ∞

0

(S −K)+pt(S)dS . (9)

Remark 2.2 The main qualitative difference between the SABR model and the modified SABR model is that A∞ = ∞
a.s. for the modified case because the driftless Brownian motion B is recurrent, but for the usual SABR model, the
associated exponential functional is

∫ t

0
e2B(µ)

s ds for µ = − 1
2 , which is finite a.s. (see [MY05]), so in this sense the

modified SABR model is more realistic.

3see Appendix B for justification.
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Figure 3: Here we have plotted the Stock price density for the modified SABR model with S0 = 1, y0 = 1, α = 1, β =
.5, δ = .2. Note that the density integrates to less than one as there is a non-zero probability of absorption.

2.3 Probability of absorption at zero for β < 1

For the standard CEV model in (4), from e.g. page 312 in Lewis[Lew00], we have the following well known expression
for the probability of absorption at S = 0 by time t

P(St = 0) =
1

Γ(ν)
G(ν,

1
2S−2β̄

0

δ2β2t
) ,

where ν = 1
2(1−β) > 0 and G(ν, x) =

∫∞
x

tν−1e−tdt is the complementary incomplete Gamma function. The probability
of absorption for the modified uncorrelated SABR model is then obtained by integrating P(St = 0) with δ = y0/α over
the density of Aα2t as

∫ ∞

0

1
Γ(ν)

G(ν,
1
2S−2β̄

0 α2

y2
0β2u

)f(u, α2t)du

=
∫ ∞

0

1
Γ(ν)

G(ν,
1
2S−2β̄

0 α2

y2
0β2u

)
1√

2πu3

1√
2πα2t

∫ ∞

−∞
cosh(ξ) e−(cosh ξ)2/2u−(ξ+iπ/2)2/2α2tdξdu . (10)

3 Large-time asymptotics

3.1 The Brownian exponential functional

We first summarize some interesting results in Matsumoto&Yor[MY05]. Letting t →∞ in (1) and using the dominated
convergence theorem, we have the following large-time behaviour for the distribution of At

lim
t→∞

√
2πt P(At ∈ du) =

1√
2πu3

∫ ∞

−∞
lim

t→∞
[cosh(ξ) e−(cosh ξ)2/2u−(ξ+iπ/2)2/2t]dξ =

1
u

e−1/2udu (u > 0) , (11)

where we have used the identity4

1√
2πu3

∫ ∞

−∞
cosh(ξ) e−(cosh ξ)2/2udξ =

1√
2πu3

( ∫ −1

−∞
+

∫ ∞

1

) b√
b2 − 1

e−b2/2udξ =
1
u

e−1/2u . (12)

(see Theorem 4.4 in [MY05]). Note that the right-hand side of (11) integrates to infinity, so it is not a probability
density function.

By the scaling property of Brownian motion

At
d= t

∫ 1

0

e2
√

tBsds ,

4This identity can be proved using the same double integral trick with polar coordinates that we use to prove that the standard Normal
distribution integrates to 1.
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and (using Laplace’s method)
1√
t
log

∫ 1

0

e2
√

tBsds → 2 max
0≤s≤t

Bs

and 1√
t
log(At) converges in law to 2|Z| as t →∞ where Z is a standard Normal r.v. (see Proposition 4.6 in [MY05]).

We now prove the a large-time asymptotic expansion for the density of At which sharpens the result in (11) in
[MY05]:

Proposition 3.1 We have the following expansion for the density of At

√
2πt P(At ∈ du) =

[ 1
u

e−1/2u +
1√

2πu3

∞∑
n=1

1
n!

(−1)n

∫ ∞

−∞
cosh(ξ) e−(cosh ξ)2/2u [

(ξ + iπ/2)2

2t
]n dξ

]
du . (13)

Proof. Recall that
f(u, t) =

1√
2πu3

1√
2πt

∫ ∞

−∞
cosh(ξ) e−(cosh ξ)2/2u−(ξ+iπ/2)2/2tdξ . (14)

Expanding the exponential we have

√
2πt P(At ∈ du) =

du√
2πu3

∫ ∞

−∞
cosh(ξ) e−(cosh ξ)2/2u

∞∑
n=0

1
n!

(−1)n[
(ξ + iπ/2)2

2t
]n dξ . (15)

But

1√
2πu3

∫ ∞

−∞
cosh(ξ) e−(cosh ξ)2/2u

∞∑
n=0

1
n!
| (ξ + iπ/2)2

2t
|n dξ

=
1√

2πu3

∫ ∞

−∞
cosh(ξ) e−(cosh ξ)2/2u

∞∑
n=0

1
n!

( [(ξ2 − 1
4π2)2 + π2ξ2]

1
2

2t

)n
dξ

=
1√

2πu3

∫ ∞

−∞
cosh(ξ) e−(cosh ξ)2/2ue[(ξ2− 1

4 π2)2+π2ξ2]
1
2 /2tdξ < ∞ . (16)

Thus we can use Fubini’s theorem to interchange the order of integration in (15) and we obtain the leading term
explicitly from (12)

3.2 The modified SABR model: β = 1

3.2.1 The log stock price density

Proposition 3.2 For the modified SABR model with β = 1 in (2), we have the following large-time asymptotic
behaviour for the density pt(x) of the log return Xt − x0

V (x, 1) = lim
t→∞

√
2πα2t pt(x) =

1√
x2 + σ2

e−
1
2 (x+

√
x2+σ2 ) . (17)

Proof. Multiplying the density of Xt − x0 by
√

2πα2t we obtain

√
2πα2t pt(x) =

∫ ∞

0

1
σ
√

2πu
e−(x+ 1

2 σ2u)2/2σ2u 1√
2πu3

∫ ∞

−∞
cosh(ξ) e−(cosh ξ)2/2u−(ξ+iπ/2)2/2α2tdξdu . (18)

Letting t →∞ and applying the dominated convergence theorem we obtain

V (x, 1) = lim
t→∞

√
2πα2t pt(x)

=
∫ ∞

0

1
σ
√

2πu
e−(x+ 1

2 uσ2)2/2uσ 1√
2πu3

∫ ∞

−∞
lim

t→∞
[cosh(ξ) e−(cosh ξ)2/2u−(ξ+iπ/2)2/2α2t]dξ du

=
∫ ∞

0

1
σ
√

2πu
e−(x+ 1

2 uσ2)2/2uσ 1
u

e−1/2udu

=
1√

x2 + σ2
e−

1
2 (x+

√
x2+σ2 ) , (19)

where we have also used the identity in (12).
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3.2.2 European and digital call options

Proposition 3.3 For the modified SABR model with β = 1 in (2), we have the following large-time asymptotic
behaviour for digital and European call options on Xt − x0

lim
t→∞

√
2πα2t P(Xt − x0 > x) =

∫ ∞

x

1√
y2 + σ2

e−
1
2 (y+

√
y2+σ2 )dy = E1(

1
2
(x +

√
x2 + σ2)) < ∞ , (20)

F (k, 1) = lim
t→∞

√
2πα2t [1− 1

S0
E(St −K)+] =

∫ ∞

−∞

ey ∧ ek

√
y2 + σ2

e−
1
2 (y+

√
y2+σ2 )dy

= E1(
1
2
(−k +

√
k2 + σ2)) + ekE1(

1
2
(k +

√
k2 + σ2))

< ∞ (21)

where K = S0e
k > 0 and E1(z) =

∫∞
x

e−z

z dz.

Remark 3.1 It is interesting to compare (21) against the following known result for the Heston model

− lim
t→∞

1
t

log(S0 − E(St −K)+) = V ∗(0) > 0

for some rate function V ∗(.) (see Corollary 2.9 in Forde&Jacquier[FJ09]). For the Heston model S0 − E(St −K)+ is
exponentially small as t →∞, but for the modified SABR model with β = 1, we see that S0 − E(St −K)+ = O(t−

1
2 ).

Proof. For the first result in (20), we note from (18) that
√

2πα2t P(Xt > x) =
∫ ∞

x

∫ ∞

0

1
σ
√

2πu
e−(y+ 1

2 σ2u)2/2σ2u 1√
2πu3

∫ ∞

−∞
cosh(ξ) e−(cosh ξ)2/2u−(ξ+iπ/2)2/2α2tdξdudy . (22)

We then just apply the dominated convergence theorem. To obtain the final answer in terms of the E1(.) function, we
change the variable of integration to z = 1

2 (y +
√

y2 + σ2).

For the second result in (21), we first note that

E(St −K)+ = E(St)− E(St ∧K) = S0 − E(St ∧K) , (23)

because (St) is a martingale (T =
∫ t

0
Y 2

s ds < ∞ a.s. so the Wald identity 1
S0
E(St) = E(eWT− 1

2 T ) = 1 holds (see
Problem 5.7 on page 197 in [KS91]). We can re-write this identity as 1

S0
E(St −K)+ = 1 − E(eXt−x0 ∧ ek). We then

just use the dominated convergence theorem as before. To obtain the final answer in terms of the E1(.) function, we
change the variable of integration to z = 1

2 (y −
√

y2 + σ2).

3.2.3 Implied volatility

We now let σ̂t(k) denote the Black-Scholes implied volatility of a European put or call option, and let V (t, k) = σ̂t(k)2t
denote the dimensionless implied variance. The following result shows exactly how V (t, k) tends to infinity as t →∞.

Proposition 3.4 For the modified SABR model with β = 1 in (2), V̂ (t, k) → ∞ and σ̂t(k) → 0 as t → ∞. More
precisely, we have the following large-time asymptotic behaviour for the implied variance V̂ (t, k) of a put/call option
with log-moneyness k

V̂ (t, k) = 4 log t − 4 log log t + 8 log(2α) + 8(
1
2
k − log F (k, 1)) + o(1) (t →∞) . (24)

Remark 3.2 Combining the large-time call price estimate in (21) and Theorem 3.1 in Tehranchi[Tehr09], we have

V̂ (t, k) = −8 logE(St ∧K)− 4 log[− logE(St ∧K)] + 4k − 4 log π + ε(k, t)

= −8 log(
F (k, 1) + o(1)√

2πα2t
)− 4 log[− log(

F (k, 1) + o(1)√
2πα2t

)] + 4k − 4 log π + ε(k, t)

= 4 log t− 8 log F (k, 1) + 4 log(2πα2)− 4 log[− log(F (k, 1) + o(1)) +
1
2

log t +
1
2

log(2πα2)] + 4k − 4 log π + ε(k, t)

= 4 log t− 8 log F (k, 1) + 4 log(2πα2)− 4 log[
1
2

log t (1− log(F (k, 1) + o(1)− log(2πα2))
log(t)

)] + 4k − 4 log π + ε(k, t)

= 4 log t− 4 log log t + 8(
1
2
k − log F (k, 1)) + 4 log(4α2) + o(1) (t →∞) , (25)

where ε(k, t) → 0 as t →∞, which is consistent with (24).
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Remark 3.3 V̂ (t, k) = O(log t) does tend to infinity, but much slower than for the Heston model; under the Heston
model, σ̂2

t (k) = V̂ (t, k)/t tends to a positive constant (and also under the Black-Scholes model, trivially). For the
modified SABR model here, we need t = O(e1/ε) for ε ¿ 1 for the leading order 4 log t term to be O(1/ε), and for
relative error (which is o( 1

log t )) to be O(ε). For this reason, the formula (24) is of more theoretical than practical
interest; in practice it is more natural to work directly with the call option asymptotics in Proposition 3.4.

Remark 3.4 1
2k−log F (k, 1) is an even function of k, so the asymptotic smile V̂ (t, k) is symmetric in the log-moneyness

k as it should be. 1
2k − log F (k, 1) is the “smile component” of the implied variance.

Proof. We have already shown that E(St−K)+ ↗ S0 as t →∞. Using (21) and Proposition 2.3 in [FJL10], we know
that for all δ > 0, there exists a t∗ = t∗(δ) such that for all t > t∗

F (k, 1)√
2πα2t

(1− δ) ≤ 1− 1
S0
E(St −K)+ ≤ e−

1
8 V̂ (t,k)(1−δ) . (26)

Taking logs and multiplying by −1 we have

log(
√

2πα2t)− log F (k, 1)− log(1− δ) ≥ − log[1− 1
S0
E(St −K)+] ≥ 1

8
V̂ (t, k)(1− δ) (27)

and from this we obtain

1
2
(1 + δ) log t ≥ − log[1− 1

S0
E(St −K)+] ≥ 1

8
V̂ (t, k)(1− δ) (28)

for t sufficiently large, which yields a lower bound for V̂ (t, k). Proceeding similarly for the upper bound, we establish
the leading order asymptotic behaviour for the implied variance as

V̂ (t, k) ∼ 4 log t (t →∞) (29)

(note that the right-hand side is independent of k and all the parameters of the model). Set V0(k, t) = 4 log t and let
V̂ (t, k) = V̂0(t)

[
1 + Ṽ1(t, k)

]
, where Ṽ1(t, k) → 0 as t → ∞. Then for any δ > 0, there exists a t∗∗ = t∗∗(δ) such that

for t > t∗∗ we have

F (k, 1)√
2πα2t

(1− δ) ≤ 1− 1
S0
E(St −K)+ ≤

√
8√

πV̂ (t, k)
e−

1
8 V̂ (t,k)+ 1

2 k(1 + δ)

=
√

8√
πV̂0(t)(1 + Ṽ1(t, k))

e−
1
8 V̂0(t)(1+Ṽ1(t,k))+ 1

2 k(1 + δ) . (30)

Multiplying by
√

π e
1
8 V̂0(t) =

√
π
√

t, we obtain

F (k, 1)√
2α2

(1− δ) ≤
√

8√
V̂0(t)(1 + Ṽ1(t, k))

e−
1
8 V̂0(t)Ṽ1(t,k)+ 1

2 k(1 + δ) ≤
√

8√
V̂0(t)

e−
1
8 V̂0(t)Ṽ1(t,k)+ 1

2 k (1 + 2δ) ,

for t sufficiently large, and re-arranging we obtain

− 8
V̂0(t)

[
log[

√
V̂0(t)√

8
F (k, 1)√

2α2

1− δ

1 + 2δ
]− 1

2
k
]

=
8

V̂0(t)

[− log[

√
V̂0(t)√

8
]+

1
2
k − log

F (k, 1)√
2α2

+log[
1 + 2δ

1− δ
]
] ≥ Ṽ1(t, k) . (31)

This yields a lower bound for Ṽ1(t, k), and we proceed similarly for the upper bound. Putting everything together we
obtain

V̂ (t, k) = V̂0(t)
[
1 +

8
V̂0(t)

[−1
2

log(
1
8
V̂0(t)) +

1
2
k − log

F (k, 1)√
2α2

+ o(1)]
]

= 4 log t − 4 log(
1
2

log t) + 8(
1
2
k − log

F (k, 1)√
2α2

) + o(1)

= 4 log t− 4 log log t + 4 log(2α2)− 4 log(
1
2
) + 8(

1
2
k − log F (k, 1)) + o(1) (t →∞) . (32)
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3.3 The modified SABR model: β < 1

3.3.1 The stock price density

Proposition 3.5 For the modified SABR model with β < 1 in (6), we have the following large-time asymptotic
behaviour for the stock price density pt(S)

V (S, β) = lim
t→∞

√
2πα2t pt(S)

=
∫ ∞

0

p(u, S0, S)
1
u

e−1/2udu

=
2
√

S0

(z2 + z2
0)S

3
2
|β̄

∣∣z2
0(

G(z)
z2 + z2

0

)−
2β̄−1
2β̄ (

z2 + z2
0

z2
0z2δ2

)
1
2β̄ (

i

zz0δ2
)−

1
2β̄ F ([

−1 + 4β̄

4β̄
,
2β̄ − 1

4β̄
], [

1
2

2β̄ − 1
β̄

],
4z2

0z2

G(z)2
)
∣∣ ,

where G(z) = z2 + z2
0 + (zz0)2β̄2δ2, δ = y0/α, F ([n1, n2], [d1], z) is the generalized hypergeometric function and z, z0

are defined in Proposition (2.2).

Proof. From (8) we have

√
2πα2t pt(S) =

∫ ∞

0

p(u, S0, S)
1√

2πu3

∫ ∞

−∞
cosh(ξ) e−(cosh ξ)2/2u−(ξ+iπ/2)2/2α2tdξdu .

Applying the dominated convergence theorem and using Appendix B we obtain

V (S, β) = lim
t→∞

√
2πα2t pt(S)

=
∫ ∞

0

p(u, S0, S)
1√

2πu3

∫ ∞

−∞
cosh(ξ) e−(cosh ξ)2/2udξ du

=
∫ ∞

0

p(u, S0, S)
1
u

e−1/2udu , (33)

where we have again used the identity in (12). Evaluating the last integral, we arrive at (33).

Proposition 3.6 For the modified SABR model with β < 1 in (6), we have the following large-time asymptotic
behaviour for the stock price distribution pt(S)

lim
t→∞

√
2πα2t P(St > K) =

∫ ∞

K

V (S, β)dS < ∞ ,

F (K,β) = lim
t→∞

√
2πα2t [S0 − E(St −K)+] =

∫ ∞

−∞
(S ∧K)V (S, β)dS < ∞ (34)

Proof. St has the same law as a CEV process evaluated at an independent time with the same law as At. The CEV
process dSt = δSβ

t dWt is a martingale, thus E(St) = S0 for the modified uncorrelated SABR model as well. The result
then follows by the dominated convergence theorem, similar to the proof of Proposition 3.4.

3.3.2 Implied volatility

We now let σ̂t(K) denote the Black-Scholes implied volatility of a European put or call option with strike K, and let
V̂ (t,K) = σ̂t(K)2t denote the dimensionless implied variance. The following result shows exactly how V̂ (t,K) tends
to infinity as t →∞.

Proposition 3.7 For the modified SABR model with β < 1 in (6), V̂ (t, K) → ∞ and σ̂t(K) → 0 as t → ∞. More
precisely, we have the following large-time asymptotic behaviour for the implied variance V̂ (t,K) of a put/call option
with strike K > 0

V̂ (t,K) = 4 log t − 4 log log t + 8 log(2α) + 8(
1
2

log
K

S0
− log

F (K, β)
S0

) + o(1) (t →∞) (35)

Remark 3.5 Remark 3.3 also applies here.

Remark 3.6 8( 1
2 log K

S0
− log F (S, β)) is the “smile component” of the implied variance.

Proof. The proof is almost identical to the proof of Proposition 3.4, or we can just use Theorem 3.1 in [Tehr09].



10

-10 -5 5 10

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4: Here we have plotted V (x, 1) = limt→∞
√

2πα2t pt(x) for the modified SABR model with S0 = 1, y0 = 1, α =
1, β = 1.
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Figure 5: Here we have plotted the true value of S0 − E(St − K)+ (blue) verses the large-time approximation
F (k, 1)/

√
2πα2t (grey) in (21) for t = 30, as a function of the log-moneyness k, for the same model and parame-

ters as the plot above.
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Figure 6: Here we have plotted the smile component 1
2k− log F (k, 1) of the implied variance in (24), which is symmetric

in the log-moneyness k.
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Figure 7: Here we have plotted V (S, β) = limt→∞
√

2πα2t pt(S) for the modified SABR model with S0 = 1, y0 =
1, α = 1, δ = .2, β = .5.
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Figure 8: Here we have plotted the true value of S0 − E(St − K)+ (blue) verses the large-time approximation
F (S, β)/

√
2πα2t (grey) in (21) for t = 30, as a function of the strike K, for the same model and parameters as

the plot above.

Figure 9: Here we have plotted the smile component 8( 1
2 log K − log F (S, β)) of the implied variance in (35), which is

negatively skewed as we would expect, because β < 1.



12

References

[AS72] Abramowitz, M. and I.Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables, New York: Dover Publications, 1972.

[AG97] Alili, L. and Gruet, J.-C., “An explanation of a generalized Bougerols identity in terms of hyperbolic Brownian
motion”, in , 1997.

[CMY98] Comtet, A., Monthus, C. and Yor, M., “Exponential functionals of Brownian motion and disordered systems”,
J. Appl. Prob., 35, 255-271. MR1641852, 1998.

[Cox75] Cox, J. (1975), “Notes on option pricing I: Constant elasticity of variance diffusions” working paper, Stanford
university, reprinted in Journal of Portfolio Management, 22, 15-17, 1996.

[DavLin01] Davydov, D. and V. Linetsky, “The Valuation and Hedging of Barrier and Lookback Options under the
CEV Process,” Management Science, 47, pgs 949-965, 2001.

[Forde09] Forde, M., “Small-time asymptotics for a general local-stochastic volatility model, using the heat kernel
expansion”, 2009 (submitted).

[FJM09] Forde, M., A.Jacquier and A.Mijatovic, “Asymptotic formulae for implied volatility in the Heston model”,
forthcoming in the Proceedings of the Royal Society A.

[FJ09] Forde, M. and A.Jacquier, “The Large-maturity smile for the Heston model”, 2009, forthcoming in Finance
and Stochastics.

[FJL10] Forde, M., A.Jacquier and R.Lee, “Small-time asymptotics for implied volatility under the Heston model:
Part 2”, submitted 2010.

[GS06] Gulisashvili, A. and E.M.Stein, “Asymptotic Behavior of the Distribution of the Stock Price in Models with
Stochastic Volatility: The Hull-White Model”, C. R. Acad Sci. Paris, Ser. I 343, 519-523, 2006

[GS07] Gulisashvili, A. and E.M.Stein, “Asymptotic behavior of distribution densities in models with stochastic volatil-
ity, I ”, forthcoming in Mathematical Finance.

[HL09] Henry-Labordère, P., “Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing”,
Chapman & Hall (2008).

[Isl09] Islah, O., “Solving SABR in exact form and unifying it with LIBOR market model”, working paper, 2009.

[KS91] Karatzas, I. and S.Shreve, “Brownian motion and Stochastic Calculus”, Springer-Verlag, 1991.

[Laur08] Laurence, P., “Implied Volatility, Fundamental solutions, asymptotic analysis and symmetry methods”, Cal
Tech, April 2008.

[Lew00] Lewis, A., “Option Valuation Under Stochastic Volatility: With Mathematica Code”, Finance Press, 2000.

[MY05] Matsumoto, H. and Yor, M., “Exponential Functionals of Brownian motion I: Probability laws at fixed time,
Probab. Surveys, 2, pgs 312-347, 2005.

[1] Paulot, L., “Asymptotic Implied Volatility at the Second Order With Application to the SABR Model“, working
paper (2009).

[Tehr09] Tehranchi, M., “Asymptotics of implied volatility far from maturity”, Journal of Applied Probability, 46 (3),
629-650 (2009).



13

A Use of Fubini’s theorem for β = 1

Here we justify the use of Fubini’s theorem in the proof of Proposition 2.1. For t > 1 we have

I =
∫ ∞

0

1
y0

√
2πu

e−(x+ 1
2 uy0)

2/2uy0
1√

2πu3

∫ ∞

−∞
cosh(ξ) e−(cosh ξ)2/2u−(ξ2−π2/4)/2tdξdu

≤
∫ ∞

0

1
y0

√
2πu

e−(x+ 1
2 uy0)

2/2uy0
1√

2πu3
e

π2
8t

∫ ∞

−∞
cosh(ξ) e−(cosh ξ)2/2udξdu

= e
π2
8t

∫ ∞

0

1
y0

√
2πu

e−(x+ 1
2 uy0)

2/2uy0
1
u

e−1/2udu

= e
π2
8t

1√
x2 + y2

0

e−
1
2 (x+

√
x2+y2

0 ) < ∞ . (A-1)

B Use of Fubini’s theorem for β < 1

• Here we justify the use of Fubini’s theorem in the proof of Proposition 2.2. For S < 1, t > 1 we have the following
upper bound for the CEV density

p(t, S0, S) ≤ S−2β̄− 3
2 S

1
2
0

δ2|β̄|t exp(− S2

2δ2β̄2t
)Iν(

S−β̄
0 S−β̄

δ2β̄2
) .

Then

I =
∫ ∞

0

p(u, S0, S)f(u, α2t)du

≤ e
π2
8t

S−2β̄− 3
2 S

1
2
0

δ2|β̄| Iν(
S−β̄

0 S−β̄

δ2β̄2
)
∫ ∞

0

1
u

exp(− S2

2δ2β̄2u
)

1√
2πu3

∫ ∞

−∞
cosh(ξ) e−(cosh ξ)2/2udξdu

≤ e
π2
8t

S−2β̄− 3
2 S

1
2
0

δ2|β̄| Iν(
S−β̄

0 S−β̄

δ2β̄2
)
∫ ∞

0

1
u

exp(− S2

2δ2β̄2u
)
1
u

e−1/2udu

< ∞ . (A-2)

• For S > 1, t > 1 we have the following upper bound for the CEV density

p(t, S0, S) ≤ S−2β̄− 3
2 S

1
2
0

δ2|β̄|t exp(− (log S)2

2δ2β̄2t
)Iν(

S−β̄
0 S−β̄

δ2β̄2
) .

Using this inequality as in previous case, we find that

I =
∫ ∞

0

p(u, S0, S)f(u, α2t)du < ∞ .


