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Abstract

We extend many of the classical results for standard one-dimensional diffusions to a diffusion process with memory
of the form dXt = σ(Xt, Xt)dWt, where Xt = m ∧ inf0≤s≤t Xs. In particular, we compute the expected time for
X to leave an interval, classify the boundary behavior at zero and we derive a new occupation time formula for
X. We also show that (Xt,Xt) admits a joint density, which can be characterized in terms of two independent
tied-down Brownian meanders (or equivalently two independent Bessel-3 bridges). Finally, we show that the joint
density satisfies a generalized forward Kolmogorov equation in a weak sense, and we derive a new forward equation
for down-and-out call options1.

1 Introduction

In [Forde11], we construct a weak solution to the stochastic functional differential equation Xt = x+
∫ t

0
σ(Xs,Ms)dWs,

where Mt = sup0≤s≤tXs. Using excursion theory, we then solve the following problem: for a natural class of joint
density functions µ(y, b), we specify σ(., .), so that X is a martingale, and the terminal level and supremum of X,
when stopped at an independent exponential time ξλ, is distributed according to µ. The proof uses excursion theory
for regular diffusions to compute an explicit expression for the Laplace transform of the joint density of the terminal
level and the supremum of X at an independent exponential time, and the joint density satisfies a forward Kolmogorov
equation. Integrating twice, we obtain a forward PDE for the up-and-out put option payoff which then allows us to
back out σ from the pre-specified joint density. This was inspired by the earlier work of [CHO09] and [Carr09], who
show how to construct a one-dimensional diffusion with a given marginal at an independent exponential time.

The main result Theorem 3.6 in [BS12] shows that we can match the joint distribution at each fixed time of various
functionals of an Itô process, including the maximum-to-date or the running average of one component of the Itô
process. The mimicking process is also a weak solution to stochastic functional differential equation (SFDE) and in
the special case when we are mimicking the terminal level and the maximum, the mimicking process is of the form
Xt = x+

∫ t

0
σ(Xs,Ms, s)dWs.

In this article, we consider the case when the diffusion coefficient σ(.) depends only on X and its running minimum,
and we assume X is strictly positive, and σ(x,m) is continuous with 0 < σ(x,m) < ∞ for x > 0,m ≥ 0,m ≤ x, and
that σ(0, 0) = 0. The purpose of the article is to extend many of the standard well known results for one-dimensional
diffusions to the case when σ also depends on the running minimum (as opposed to solving one problem in particular),
and we give financial motivation/applications where appropriate.

In Theorem 2.2 we prove weak existence and uniqueness in law for dXt = σ(Xt, Xt)dWt by extending the usual
time-change argument for one-dimensional diffusions. In Proposition 3.1, we compute the expected length of time to
hit either of two barriers for X, as a simple application of Itô’s lemma and the optional sampling theorem. We then
examine the non-trivial question of when the hitting time H0 to zero is finite or not (almost surely); specifically, in
Theorem 4.1 we show that for ε ∈ (0,m)

P(H0 <∞) = 0 if and only if

∫ ε

0

∫ u

0

m̃(u, v)dvdu = ∞ (1)
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where m̃(x,m) = 1
σ(x,m)2 . For the case when m̃ is independent of m, this reduces to the well known condition that

P(H0 <∞) = 0 if and only if
∫ ε

0
vm̃(v)dv = ∞ (see e.g. Theorem 51.2 (i) in [RW87]). We then formulate an extension

of the classical occupation time formula for the new X process (Theorem 5.2).

In Theorem 6.1, by adapting the argument in [Rog85] and using Girsanov’s theorem and conditioning on the
terminal value and the minimum of X, we prove the existence of the joint density pt(x,m) for X and its minimum.
We then further characterize this joint density in terms of two independent back-to-back Brownian meander bridges,
which we can further represented in terms of two independent Bessel-3 bridges using standard results in e.g. Bertoin
et al.[BCP99],[BCP03] and [Imh84]. Finally in section 8, we show that X is a weak solution to a forward Kolmogorov
equation, and we also derive a new forward equation for down-and-out call options.

2 A one-dimensional diffusion with memory

In this section, we construct a weak solution to the stochastic functional differential equation

Xt = x +

∫ t

0

σ(Xs, Xs)dWs (2)

where Xt = m ∧ inf0≤s≤tXs and W is standard Brownian motion, and we show that the solution X is unique in law.
The m parameter allows us to include the possibility that X has accrued a previous historical minimum m which may
be less than X0 = x.

We make the following assumptions on σ throughout:

Assumption 2.1
(i) σ is continuous, and strictly positive away from (0, 0)
(ii) σ(0, 0) = 0.
(iii) limx↘0

x
σ(x,x)2 = 0.

We let Hb denote the first hitting time to b:

Hb = inf{s : Xs = b}

and define m̃(u, v) = 1
σ(u,v)2 .

2.1 Weak existence and uniqueness in law

Theorem 2.2 (2) has a non-exploding weak solution for t < Hδ which is unique in law, where 0 < δ ≤ m ≤ x.

Proof.

• (Existence). Let (Bt, Px) denote a standard Brownian motion defined on some (Ω,F , (Ft)) with B0 = x > 0,
Bt = inf0≤s≤tBs, and assume that Ft satisfies the usual conditions2. Let Tt denote the a.s. strictly increasing
process

Tt =

∫ t

0

m̃(Bs,m ∧Bs)ds (3)

for t < τδ for some δ > 0, where

τa = inf{s : Bs = a} . (4)

Let At = inf{s : Ts = t} denote the inverse of Tt, and set

Xt = BAt . (5)

Then we have ∫ At

0

σ2(Bs,m ∧Bs) dTs =

∫ At

0

ds = At .

2i.e. Ft is right continuous and F0 contains all F sets of measure zero.
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If we make the change of variables u = Ts so du = dTs = m̃(Bs,m ∧ Bs)ds then we can re-write the integral on
the left as

At =

∫ t

0

σ2(Xu, Xu) du

a.s., where we have used a pathwise application of the Lebesgue-Stieltjes change of variable formula. Thus
⟨X⟩t = At a.s. Then by Theorem 3.4.2 in [KS91], there exists a Brownian motion W on some extended probability
space such that (2) is satisfied.

• (Uniqueness in law). We proceed along similar lines to Lemma V.28.7 in [RW87]. By Theorem IV.34.11 in
[RW87], if X satisfies (2), then

Bt = XTt (6)

is standard Brownian motion, where Tt = inf{s : ⟨X⟩s = t}, so∫ Tt

0

σ(Xs, Xs)
2ds = t .

Differentiating with respect to t we obtain

σ(XTt
, XTt

)2T ′
t = 1 = σ(Bt,m ∧Bt)

2T ′
t ,

dTt = m̃(Bt,m ∧Bt)dt. Hence

⟨X⟩t = inf{u :

∫ u

0

m̃(Bs,m ∧Bs)ds = t} .

Thus X may be described explicitly in terms of the Brownian motion B, so the law of X is uniquely determined.

Finally, stopping X at Hδ means we are only running B until time τδ, and τδ <∞ a.s., so (Xt∧Hδ
) cannot explode to

infinity a.s.

From here on we work on the canonical sample space Ω = C([0,∞),R+) with the canonical process Xt(ω) = ω(t)
(ω ∈ Ω, t ∈ [0,∞)) and its canonical filtration Ft = σ(Xs; s ≤ t). Let Px,m denote the law on (Ω,B(Ω)) induced by a
weak solution to (2) (which is unique by Theorem 2.2).

Remark 2.1 If σ ≡ σ(x,m, t) is time-dependent, we can still obtain weak existence and uniqueness if the solution to
the ordinary differential equation dTt = m̃(Bt,m ∧ Bt, Tt)dt is uniquely determined a.s. This will be the case if m̃ is
Lipschitz in the third argument.3

We refer the reader to [Mao97] and [Moh84] for existence and uniqueness results for general Stochastic functional
differential equations.

2.2 Application in financial modelling

We can consider a time-homogenous local volatility model with memory for a forward price process (Ft)t≥0 which
satisfies

dFt = Ftµdt+ Ftσ(Ft, F t)dWt

under the physical measure P. This has the desirable feature of being a complete model, so under the unique risk
neutral measure Q, Ft will satisfy dFt = Ftσ(Ft, F t)dWt, i.e. a diffusion-type process of the form in (2).

3We thank Gerard Brunick for pointing this out.
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3 The expected time to leave an interval

The following proposition computes a closed-form expression for the expectation of the exit time from an interval,
using Itô’s lemma and a simple application of the optional sampling theorem. This proposition will be needed in the
next section where we classify the boundary behaviour of X at zero. The proof is similar to that used for a regular
diffusion in section 5.5, part C in [KS91] and page 197 in [KT81].

Proposition 3.1 We have the following expression for the expected time for X to leave the interval (a, b) :

h(x,m) = Ex,m(Ha ∧Hb)

= 2

∫ x

m

(u− x)m̃(u,m)du+
2(x−m)

b−m

∫ b

m

(b− u)m̃(u,m)du + 2(b− x)C(m) <∞ , (7)

for 0 < a ≤ m ≤ x ≤ b <∞, where C(m) =
∫ b

a

∫ u∧m

a
b−u

(b−v)2 m̃(u, v)dvdu.

Proof. We can easily verify that h(x,m) satisfies

m̃(x,m) = −1

2
hxx , hm(m,m) = 0 , (8)

with endpoint condition h(a, a) = h(b,m) = 0 for all a ≤ m < b.

Now let τ = Ha ∧Hb. Then by Itô’s lemma, we have

h(Xt∧τ , Xt∧τ ) − h(x,m) =

∫ t∧τ

0

hx(Xs, Xs)dXs +
1

2

∫ t∧τ

0

hxx(Xs, Xs)σ
2(Xs, Xs)ds

+

∫ t∧τ

0

hm(Xs, Xs)dXs

=

∫ t∧τ

0

hx(Xs, Xs)dXs +
1

2

∫ t∧τ

0

hxx(Xs, Xs)σ
2(Xs, Xs)ds

using the second equation in (8) and the fact that dXt = 0 if Xt ̸= Xt. hx(u, v) and σ(u, v) are bounded for
0 < a ≤ v ≤ u ≤ b, so taking expectations and applying the optional sampling theorem, and using the first equation
in (8), we have

Ex,m(h(Xt∧τ , Xt∧τ )) = h(x,m) − Ex,m(t ∧ τ) . (9)

m̃(u, v) ≤ K for 0 < a ≤ v ≤ u ≤ b for some constant K > 0, so we have

h(x,m) = Ex,m(Ha ∧Hb)

= 2

∫ x

m

(u− x)m̃(u,m)du+
2(x−m)

b−m

∫ b

m

(b− u)m̃(u,m)du + 2(b− x)C(m)

≤ 2K

[ ∫ x

m

(x− u)du+

∫ b

m

(b− u)du+ (b− x)

∫ b

a

∫ u∧m

a

b− u

(b− v)2
dvdu

]
< ∞ .

Thus h(., .) is continuous and bounded, so letting t → ∞ in (9) and applying the dominated convergence theorem on
the left hand side and the monotone convergence theorem on the right hand side, and using that h(a, a) = h(b,m) = 0,
we obtain (7).

4 Absorption at zero

Theorem 4.1 Let ε ∈ (0,m). Then we have the following boundary behaviour for X:

Px,m(H0 <∞) = 0 if and only if

∫ ε

0

∫ u

0

m̃(u, v)dvdu = ∞ .
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Remark 4.1 For the case when m̃ is independent of m, X is a regular one-dimensional diffusion, and Theorem 4.1
reduces to the well known condition that

Px(H0 <∞) = 0 if and only if

∫
0+

vm̃(v)dv = ∞

(see e.g. Theorem 51.2 (i) in [RW87]).

Proof. (of Theorem 4.1). Setting a = 0 in (7), we have

C(m) =

∫ b

0

∫ u∧m

a

b− u

(b− v)2
m̃(u, v)dvdu (10)

and Ex,m(H0 ∧Hb) < ∞ if and only if C(m) < ∞, because m̃(0, 0) = ∞ and m̃ < ∞ elsewhere, all the upper limits
of integration are finite and 1

b−v will not explode because the upper range of v is m < b. Noting that b−u
(b−v)2 → 1 as

u, v ↘ 0 and replacing the upper limits of integration by ε ∈ (0,m), we see that

Ex,m(H0 ∧Hb) <∞ if and only if Cε(m) =

∫ ε

0

∫ u∧m

a

m̃(u, v)dvdu <∞ . (11)

Thus we have established that Ex,m(H0 ∧Hb) <∞ if and only if
∫ ε

0

∫ u

0
m̃(u, v)dudv <∞. We now need to verify that

Px,m(H0 <∞) = 0 if and only if
∫ ε

0

∫ u

0
m̃(u, v)dvdu = ∞ .

• First assume that
∫ ε

0

∫ u

0
m̃(u, v)dvdu < ∞. Then Ex,m(H0 ∧ Hb) < ∞, so H0 ∧ Hb < ∞ a.s and Px,m(H0 =

Hb = ∞) = 0. But from the construction of X via a time-changed Brownian motion B in (5), we know that
Px(τ0 < τb) > 0 where τa is the first hitting time of B to a as defined in (4), hence Px,m(H0 ≤ Hb) > 0,
Px,m(H0 < Hb) > 0 and

Px,m(H0 <∞) ≥ Px,m(H0 < Hb ≤ ∞) > 0 .

• Conversely, assume that Px,m(H0 < ∞) > 0. For this part, we proceed as in the proof of Lemma 6.2 in [KT81].
Then there exists a t > 0 for which

Px,m(H0 < t) = α > 0.

Every path starting at x and reaching zero prior to time t visits every intervening state ξ ∈ (0, x). Thus we have

0 ≤ α ≤ Px,m(H0 −Hξ < t) = Pξ,ξ∧m(H0 < t) ≤ Pξ,,ξ∧m(Hx ∧H0 < t)

for 0 < ξ ≤ x. It follows that

sup
ξ∈(0,x]

Pξ,,ξ∧m(Hx ∧H0 ≥ t) ≤ 1 − α < 1 ,

and by induction, we find that

sup
ξ∈(0,x)

Pξ,,ξ∧m(Hx ∧H0 ≥ nt) ≤ (1 − α)n < 1 .

We can re-write this as

Pξ,ξ∧m(Hx ∧H0 ≥ a) ≤ (1 − α)[a/t] ≤ (1 − α)a/t−1 . (12)

We now recall the general result on e.g. page 79 in [Will91]: for any non negative random variable Y we have

E(Y ) =

∫
[0,∞)

P(Y ≥ y)dy .

Thus E(Y ) <∞ if and only if
∫
(R,∞)

P(Y ≥ y)dy <∞ for any R > 0. Thus setting Y = Hx ∧H0 we have

Eξ,ξ∧m(Hx ∧H0) < ∞

if and only if

∫
[R,∞)

Pξ,ξ∧m(Hx ∧H0 ≥ a)da < ∞ .
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But from (12) we have∫
[R,∞)

Pξ,ξ∧m(Hx ∧H0 ≥ a)da ≤
∫ ∞

R

(1 − α)a/t−1da =
t(1 − α)−1+R/t

log(1 − α)
< ∞ .

Thus Eξ,ξ∧m(Hx ∧H0) <∞, and from the first part of the proof we know that Eξ,ξ∧m(Hx ∧H0) is finite if and
only if

∫ ε

0

∫ u

0
m̃(u, v)dvdu < ∞ for all ε ≤ m.

Remark 4.2 For a stock price model of the form in (7), Theorem 4.1 allows us to compute whether or not the stock
will default by hitting zero or not in a finite time under the risk neutral measure Q, which is relevant for the pricing
of so-called credit default swaps, which pay 1 dollar at maturity T if the stock defaults before T .

5 The occupation time formula

From the continuity of σ, we see that for any R ∈ (1,∞) and 0 < 1
R ≤ v ≤ u < R, m̃(u, v) is continuous in v, and

thus (by the Heine-Cantor theorem) is uniformly continuous in v on the compact set 0 < 1
R ≤ v ≤ u < R with v

fixed. Using this property, we will construct an approximating sequence of processes (Xn) to the process X in (2) by
“freezing” the m-dependence on a small interval. We then derive a new occupation time formula for X by applying
the standard occupation time formula for regular diffusions to the approximating process on each small interval, and
then letting n→ ∞.

5.1 Almost sure convergence for an approximating sequence of diffusion processes

Recall that τb = inf{s : Bs = b}. Set 0 < b ≤ m ≤ x, and m̃n(u, v) = m̃(u, 1
n [vn]) for n ≥ 1, so that m̃n(u, v) is

piecewise constant in v, and define the process

Xn
t = BAn

t
(13)

where An
t is the strictly increasing continuous inverse of

Tn
t =

∫ τm∧t

0

m̃(Bs,m)ds +

∫ t

τm∧t

m̃n(Bs, Bs)ds

for 0 ≤ t < τ0. Note that Xt = Xn
t for 0 ≤ t ≤ Hm, because the m dependence in σ is “frozen” until X sets a new

minimum below m.

Proposition 5.1 Let Hn
b = inf{s : Xn

s = b} and Hb = inf{s : Xs = b} as before for b ∈ (0,m). Then Hn
b → Hb a.s.

and Xt∧Hb
−Xn

t∧Hn
b
→ 0 a.s.

Proof. Without loss of generality, we assume that x = m, otherwise we just start from time Hm instead of time zero.
From the time-change construction in the proof of Theorem 2.2, we know that Bt = XTt and Bτb = XHb

so we have

Hb =

∫ τb

0

m̃(Bs, Bs)ds

and similarly

Hn
b =

∫ τb

0

m̃n(Bs, Bs)ds .

Using the uniform continuity of m̃(u, v) on {(u, v) : 1
R ≤ v ≤ u ≤ R} for any R ∈ (1,∞), and the fact that

sup0≤s≤τb
Bs(ω) <∞ a.s., we know that for any ε > 0 there exists a N = N(ω) such that for all n > N(ω) we have

|Hb −Hn
b | = |

∫ τb

0

[m̃(Bs, Bs) − m̃n(Bs, Bs)]ds |

= |
∫ τb

0

[m̃(Bs, Bs) − m̃(Bs,
1

n
[nBs])]ds| ≤ ετb
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and τb < ∞ Px a.s., so Hb → Hn
b a.s. Now, let m̃min(ω) = inf0≤s≤τb m̃(Bs(ω), Bs(ω)) < ∞ a.s. By the definition of

the inverse processes At and An
t , we have

t ∧Hb =

∫ At∧τb

0

m̃(Bs, Bs)ds ≥ (At ∧ τb) m̃min(ω) , (14)

t ∧Hn
b =

∫ An
t ∧τb

0

m̃n(Bs, Bs)ds . (15)

We first consider the case when At ∧ τb ≤ An
t ∧ τb (the other case is dealt with similarly). We know that

sup0≤s≤τb∧At
Bs < ∞ a.s. Subtracting (15) from (14), and again using the uniform continuity of m̃ in m, we see

that

t ∧Hb − t ∧Hn
b =

∫ At∧τb

0

[m̃(Bs, Bs) − m̃n(Bs, Bs)]ds −
∫ An

t ∧τb

At∧τb

m̃n(Bs, Bs)ds

≤ ε (At ∧ τb) − m̃min(ω)(An
t ∧ τb −At ∧ τb)

≤ ε (t ∧Hn
b )

m̃min(ω)
− m̃min(ω)(An

t ∧ τb −At ∧ τb) ,

where we have used the inequality in (14) for the final line. Re-arranging, we find that

0 ≤ m̃min(An
t ∧ τb −At ∧ τb) ≤ ε(t ∧Hn

b )

m̃min
− (t ∧Hb − t ∧Hn

b )

a.s. But we have already shown that Hn
b → Hb a.s, so the right hand side can be made arbitrarily small, and thus

An
t ∧ τb → At ∧ τb a.s. We proceed similarly for the case An

t ∧ τb ≤ At ∧ τb. Then

Xt∧Hb
−Xn

t∧Hn
b

= BAt∧τb −BAn
t ∧τb . (16)

and B is continuous, so

Xt∧Hb
−Xn

t∧Hn
b

→ 0

a.s. as required.

5.2 The occupation time formula

Let (lxt ) denote the local time process for B in (5) at the level x.

Theorem 5.2 Let x = m, 0 < δ < x and f : R2 7→ R+ be a bounded, continuous function. Then we have the
occupation time formula∫ Hδ∧t

0

f(Xs, Xs)ds =
∑

δ<m≤x

∫ ∞

m

f(x,m) m̃(x,m) lx,mAt∧τδ
dx a.s. (17)

where lx,mt =
∫ t

0
1Bs∈{m}dl

x
s = lxτb− − lxτb ≥ 0 is the local time that B spends at x when the minimum is exactly m, and

the sum is taken over the (a.s. countable) m-values where B makes a non-zero upward excursion from a minimum at
m.4

Proof. See Appendix A.

Remark 5.1 Theorem 5.2 is clearly more involved than the standard occcupation time formula. However, it can be
used to show that

∫ ϵ

0

∫ u

0
m̃(u, v)dvdu < ∞ implies that

Px,m(H0 <∞) = 1 ,

which combined with Theorem 4.1 shows that P(H0 < ∞) is either one or zero depending on the finiteness of∫ ϵ

0

∫ u

0
m̃(u, v)dvdu (we defer the details for future work).

4we know these m-values are a.s. countable from standard excursion theory for Brownian motion, see e.g. Chapter XII, section 2 in
[RY99].
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6 Transition densities

6.1 Existence of a joint transition density for (Xt, X t)

Theorem 6.1 Define the function
σ̃(y, y) = e−yσ(ey, ey)

for all y ≥ y, and assume that

• σ̃(y, y) possesses bounded continuous partial derivatives of all orders up to and including 2;

•
∫ ε

0

∫ u

0
m̃(u, v)dvdu = ∞ so P(H0 <∞) = 0.

Then under Px,x, (Xt, Xt) defined in (2) admits a joint density pt(x
′, x′).

Remark 6.1 Note that under Px,m with x > m, there is a non-zero probability that Xt = m ∧ inf0≤s≤tXs = m, i.e.
the law of Xt has an atom at m.

Proof. Let Yt := logXt, Y t := logXt, which are well defined because X cannot hit zero in finite time a.s. We notice
that Y0 = Y 0. Using Itō’s lemma we have

dYt = σ̃(Yt, Y t)dWt −
1

2
σ̃2(Yt, Y t)dt.

Let us define

ρt = inf{u ≤ t : Xu = Xt}.

Because the log function is monotonically increasing, we have that ρt = inf{u ≤ t : Yu = Y t}. We now make a
transformation of Y to a process with diffusion coefficient equal to one. To this end, we first define

η(y) =

∫ y

y0

du

σ̃(u, u)
,

β(y, y) = η(y) +

∫ y

y

du

σ̃(u, y)
,

and consider the new processes Zt :=β(Yt, Y t) and Zt := infs≤t Zs, then Z0 = β(Y0, Y 0) = 0. Notice that for all t,

Zt = β(Yt, Y t) = η(Y t) +

∫ Yt

Y t

du

σ̃(u, Y t)
≥ η(Y t),

and from this we see that

Zt = inf
s≤t

Zs ≥ η(Y t). (18)

It turns out that we have equality in (18), since at time ρt ≤ t we have Yρt = Y t. Using the monotonicity of η(·), β(·, y),
we have

Y t = η−1(Zt), (19)

Yt = β−1(Zt, η
−1(Zt)), (20)

ρt = inf{u ≤ t : Zu = Zt},

where β−1(·, y) is the inverse of function β(·, y).

Since β is at least C2, using Itō’s lemma we obtain that

dZt = dWt −
1

2
[σ̃(Yt, Y t) + σ̃y(Yt, Y t)]dt = dWt + b(Zt, Zt)dt
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where b(z, z) = −1
2 [σ̃(β−1(z, η−1(z)), η−1(z))+ σ̃y(β−1(z, η−1(z)), η−1(z))]. In light of (19) and (20), it suffices to show

that (Zt, Zt) has a density function.

We now mimic the proof of [Rog85], and consider a new measure P̃ defined by

dP
dP̃

∣∣∣∣
Ft

= exp{
∫ t

0

b(Zs, Zs)dZs −
1

2

∫ t

0

b2(Zs, Zs)ds}.

By Girsanov’s theorem, the process (Zt) is a standard Brownian motion under measure P̃. Now define the C2 function

h(z, z) =

∫ z

z

b(u, z)du+

∫ z

0

b(u, u)du .

Using Itō’s lemma we have

dh(Zt, Zt) = b(Zt, Zt)dZt +
1

2
bz(Zt, Zt)dt,

from which we obtain that (notice that h(Z0, Z0) = h(0, 0) = 0))

h(Zt, Zt) −
1

2

∫ t

0

bz(Zs, Zs)ds =

∫ t

0

b(Zs, Zs)dZs.

Now for any bounded bi-variate continuous function f , we have

E(f(Zt, Zt)) = Ẽ(f(Zt, Zt) e
h(Zt,Zt)−

1
2

∫ t
0
g(Zs,Zs)ds)

where g = b2 + bz. Conditioning on (Zt, Zt) = (z, z) for z > z, z < 0, we obtain

E(f(Zt, Zt)) =

∫ 0

−∞

∫ ∞

z

f(z, z) · ϕt(z, z) eh(z,z) Ẽ(e−
1
2

∫ t
0
g(Zs,Zs)ds|Zt = z, Zt = z) dzdz

where ϕt(z, z) is the joint density of the standard Brownian motion (Zt) and its minimum Zt. Thus, the pair (Zt, Zt)
has a joint density

p
Z,Z
t (z, z) = ϕt(z, z) eh(z,z) Ẽ(e−

1
2

∫ t
0
g(Zs,Zs)ds |Zt = z, Zt = z) . (21)

It follows that the pair (Yt, Y t) = (logXt, logXt) has joint density

p
Y,Y
t (y, y) = p

Z,Z
t (β(y, y), η(y))

∂β

∂y

∂η

∂y
=

p
Z,Z
t (β(y, y), η(y))

σ̃(y, y)σ̃(y, y)
. (22)

Remark 6.2 For a stock price model of the form in (7), the existence of a semi-closed form density for (Xt, Xt) as
proved above allows us to price general barrier option contracts with payoffs of the form φ(Xt, Xt) for a measurable
function φ.

6.2 Characterizing the joint density in terms of Bessel-3 bridges

From (21) and (22), it is seen that the regularity of the joint density of p
Y,Y
t (y, y) depends on that of h in (21) and the

following function ψt :

ψt(z, z) = Ẽ(e−
1
2

∫ t
0
g(Zs,Zs)ds |Zt = z, Zt = z). (23)

The function ψt depends on the law of a standard Brownian motion (Zs)0≤s≤t given Zt, and Zt. To this end, let us
condition on (Zt, Zt, ρt) = (z, z, u). (Zt, Zt, ρt) has a smooth density given by

χt(z, z, u) = 2f(z, u)f(z − z, t− u)

=
−z (z − z)

πu
3
2 (t− u)

3
2

e−
z2

2u− (z−z)2

2(t−u) ,
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where f(y, t) = |y|√
2πt3

e−y2/2t is the hitting time density from 0 to y for standard Brownian motion (see e.g. [Imh84]).

Moreover, given (Zt, Zt, ρt) = (z, z, u), the path fragments

(Zu−s − z)0≤s≤u and (Zu+s − z)0≤s≤t−u

are two independent Brownian meanders of lengths u and t − u, starting at 0 and conditioned to end at −z > 0 and
z − z > 0 respectively (see e.g. [BCP99]). A Brownian meander of length s is defined as the re-scaled portion of a
Brownian path following the last passage time at zero G1 = sup{s ≤ 1 : Bs = 0}:

Bme
u =

√
s√

1 −G1

|BG1+
u
s (1−G1)| (0 ≤ u ≤ s)

(see page 63 in [BorSal02]). It is known that the law of a Brownian meander of length s is identical to that of a
standard Brownian motion starting at zero and conditioned to be positive for t ∈ [0, s] (see e.g. [DIM77]). Moreover,
the tied-down Brownian meander, i.e. the Brownian meander conditioned so that Bme

1 = x > 0 has the same law as a
3-dimensional Bessel bridge Rbr with Rbr

0 = 0 and Rbr
1 = x (see e.g. [Imh84], [BCP03]).

Hence, the path fragments (Zu−s−z)0≤s≤u and (Zu+s−z)0≤s≤t−u can be identified with two independent Bessel-3
bridges, starting at 0, ending at −z > 0 and z − z > 0, respectively (see [BCP99], [Will74]). Thus, as in [Pau87], we
have

κt(z, z, u) = Ẽ(e−
1
2

∫ u
0

g(Zs,Zs)ds|Zt = z, Zt = z, ρt = u) · Ẽ(e−
1
2

∫ t
u
g(Zs,z)ds|Zt = z, Zt = z, ρt = u)

= Ẽ(e−
1
2

∫ u
0

g(Zs,Zs)ds|Zt = z, Zt = z, ρt = u) · Ẽ(e−
1
2

∫ t−u
0

g(Zt−s,z)ds|Zt = z, Zt = z, ρt = u)

and we can re-write the last expectation in terms of the two aforementioned independent Bessel 3 bridges if we wish.
It follows that

ψt(z, z) = Ẽ(e−
1
2

∫ t
0
g(Zs,Zs)ds |Zt = z, Zt = z)

=

∫ t

0

κt(z, z, u) P̃(ρt ∈ du |Zt = z, Zt = z) du

=

∫ t

0

κt(z, z, u)
χt(z, z, u)

ϕt(z, z)
du .

7 A generalized forward Kolmogorov equation

In this section we assume that m = x = x0 so X0 = X0 = x0 > 0 and we use E as shorthand for Ex0,x0 . We further
assume that

∫ ε

0

∫ u

0
m̃(u, v)dvdu = ∞ so Px,x(H0 < ∞) = 0, i.e. X cannot hit zero a.s. and for simplicity we assume

that σ is bounded 5. Let O = {(x, y) ∈ R+ × R+ : x ≥ y} denote the support of (Xt, Xt).

Theorem 7.1 (Xt, Xt) satisfies the following forward equation

∂

∂t
E(f(Xt, Xt, t)) = E(ft(Xt, Xt, t) +

1

2
fxx(Xt, Xt, t)σ(Xt, Xt)

2) (24)

for all test functions f ∈ C2,1,1
b (O × R+) satisfying fy(y, y, t) = 0.

Proof. See Appendix B.

Remark 7.1 If f ∈ C∞
c (O × R+)6, re-writing (24) in terms of integrals and integrating from t = 0 to ∞ and using

that f(t,Xt, Xt) = 0 a.s. for t sufficiently large, we see that p(t, dx, dy) = P(Xt ∈ dx,Xt ∈ dy) satisfies∫ ∞

t=0

∫
O

(ft +
1

2
σ(x, y)2fxx) p(t, dx, dy) dt = 0 (25)

5We can easily relax this assumption by working in log space as in the previous section, but in the interests of clarity and succinctness,
we do not do this here

6C∞
c means smooth with compact support.
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Remark 7.2 If p(t, dx, dy) admits a density so that p(t, dx, dy) = p(t, x, y)dxdy and p and σ are twice continuously
differentiable in x and p is once differentiable in t, then integrating (25) by parts we have∫ ∞

t=0

∫
O
f(x, y, t) [−∂tp+ ∂2xx(

1

2
σ(x, y)2p)] dxdydt = 0

and thus (by the arbitraryness of f), p(t, x, y) is a classical solution to the family of forward Kolmogorov equations:

∂tp = ∂2xx(
1

2
σ(x, y)2p) (x ̸= y)

for all y ≤ x (see page 252 in [RW87], Theorem 3.2.6 in [SV79] and [Fig08] for similar results and weak formulations
for a standard diffusion process).

7.1 A forward equation for down-and-out call options

Proposition 7.2 Assume k > 0, 0 < b < x0. Then

E((Xt − k)+1Xt>b) − (X0 − k)+ =
1

2
E(Lk

t∧Hb
) − (b− k)+ P(Xt ≤ b) , (26)

where La
t is the semimartingale local time of X at a as defined in e.g. Theorem 3.7.1 in [KS91] and Hb = inf{s : Xs =

y}, subject to the following boundary condition at x = y:

E((Xt − b)+1Xt>b) = E((Xt − b)1Xt>b) = x0 − b . (27)

Remark 7.3 (26) is a forward equation for a down-and-out call option on Xt with strike x, which knocks out if X
hits y before time t. Specifically (assuming zero interest rates and dividends) the left hand side is the fair price of the
down-and-out call, and the P(Xt ≤ y) term on the right-hand side is the price of a One-Touch option on Xt which
pays 1 if X hits y before t.

Remark 7.4 (27) is the same condition that appears in [Rog12], and if Xt has no atom at y, we can differentiate (27)
with respect to y to obtain the condition in Theorem 3.1 in [Rog93].

Remark 7.5 The financial interpretation of (27) is the well known result that (for zero dividends and interest rates)
we can semi-statically hedge a down-and-out call option with barrier b equal to the strike k, by buying one unit of stock
and holding −b dollars, and unwinding the position if/when the barrier is struck (see e.g. Appendix A in [Der95]).

Proof. (of Proposition 7.2). From the generalized Itô formula given in e.g. Theorem 3.7.1 in [KS91], we obtain

d(Xt − k)+ = 1Xt>kdXt +
1

2
dLk

t .

Integrating from time zero to t ∧Hb we obtain

(Xt∧Hb
− k)+ − (X0 − k)+ = (Xt − k)+1Hb>t + (b− k)+1Hb≤t − (X0 − k)+

=

∫ t∧Hb

0

1Xs>xdXs +
1

2
Lk
t∧Hb

.

Taking expectations and simplifying, we obtain (26).

To obtain the boundary condition in (27), we use the optional sampling theorem for the bounded stopping time
t ∧Hb to obtain

E(Xt∧Hb
) = x0 = E(Xt1Xt>b) + E(XHb

1Hb≤t)

= E(Xt1Xt>b) + bP(Xt ≤ b)

= E((Xt − b)1Xt>b) + bE(1Xt>b) + bE(1Xt≤b)

= E((Xt − b)1Xt>b) + b

= E((Xt − b)+1Xt>b) + b ,

where the last equality follows because Xt > b on {Xt > b}, i.e. if X does not hit b before time t.
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A Proof of Theorem 5.2

(Xn
t ) defined in (13) is just a regular one-dimensional diffusion process for t ∈ [Hn

k+1
n

,Hn
k
n

) for each k = 0 ... [x0n] − 1.

Using the standard occupation time formula for t ∈ [Hn
k+1
n

,Hn
k
n

) for each k (see Theorem 49.1 in [RW87]), we have

∫ Hn
k
n

∧t

Hn
k+1
n

∧t

fn(Xn
s , X

n
s )ds =

∫ ∞

δ

f(x,
k

n
)m̃(x,

k

n
) l

x,( k
n , k+1

n ]

An
t ∧τδ

dx

=

∫ ∞

δ

∑
k
n<m≤ k+1

n

fn(x,m)m̃n(x,m) lx,mAn
t ∧τδ

dx

where fn(x,m) = f(x, 1
n [nm]), l

x,(a,b]
t =

∫ t

0
1Bs∈(a,b]dl

x
s is the local time that B has accrued at x at time t while

B ∈ (a, b], and we are summing over (a.s. countable) m-values in ( k
n ,

k+1
n ] for which there is a non-zero upward

excursion from a minimum at m.

Summing over k until time t ∧Hn
δ and taking the finite sum inside the integral on the right hand side, we obtain∫ t∧Hn

δ

0

f(Xn
s , X

n
s )ds =

∫ t

0

f(Xn
s , X

n
s ) 1s<Hn

δ
ds

=

[x0n]−1∑
k=0

∫ ∞

δ

∑
k
n<m≤ k+1

n

fn(x,m) m̃n(x,m) lx,mAn
t ∧τδ

dx

=

∫ ∞

δ

[
∑

δ<m≤x

fn(x,m) m̃n(x,m) lx,mAn
t ∧τδ

] dx

=

∫ sup0≤s≤τδ
Bs

δ

[
∑

δ<m≤x

fn(x,m) m̃n(x,m) lx,mAn
t ∧τδ

] dx (A-1)

For the left hand integral, from Proposition 5.1, we know that Hn
δ → Hδ a.s. and Xn

t∧Hn
δ

→ Xt∧Hδ
a.s., so

f(Xn
s , X

n
s ) 1s<Hn

δ
→ f(Xs, Xs) 1s<Hδ

Lebesgue a.e. on [0, t], a.s. Thus, by the dominated convergence theorem,

we have
∫ t

0
1s≤Hn

δ
f(Xn

s , X
n
s )ds→

∫ t

0
1s≤Hδ

f(Xs, Xs)ds =
∫ t∧Hδ

0
f(Xs, Xs)ds a.s.

For the integrand on the right hand side, we have the upper bound∑
δ<m≤x

fn(x,m)m̃n(x,m) lx,mAn
t ∧τδ

≤ fmax m̃max(δ, ω) lxAn
t ∧τδ

< ∞ a.s.

where m̃max(δ, ω) = sup0≤s≤τδ
m̃(Bs, Bs) < ∞ a.s. Thus, letting n → ∞ on both sides of (A-1), and applying the

dominated convergence theorem on the right hand side as well, and then applying Fubini’s theorem, we obtain (17).
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B Proof of Theorem 7.1

Let σt = σ(Xt, Xt). Xt and Xt are continuous semimartingales, so we can apply Itô’s formula to the test function
f ∈ C2,1,1

b (O × R+):

df(Xt, Xt, t) = fx(Xt, Xt, t)dXt +
1

2
fxx(Xt, Xt, t)σ

2
t dt + fy(Xt, Xt, t)dXt,

= fx(Xt, Xt, t)dXt +
1

2
fxx(Xt, Xt, t)σ

2
t dt (B-1)

where we have used that Xt = Xt on the growth set of Xt in the final term7 (recall that ψy(y, y, t) = 0). Integrating
we obtain

f(Xt, Xt, t) − f(x0, x0, 0) =

∫ t

0

fx(Xs, Xs, s)dXs +

∫ t

0

1

2
fxx(Xs, Xs, s)σ

2
sds

Taking expectations, and applying Fubini’s theorem yields

E(f(Xt, Xt, t)) − f(x0, x0, 0) =

∫ t

0

1

2
E(fxx(Xs, Xs, s)σ

2
s)ds . (B-2)

Xt and Xt are continuous in t a.s. and σ(., .) is continuous, so σt = σ(Xt, Xt, t) is also continuous in t a.s. Moreover,

f ∈ C2,1,1
b so fxx(., .) is bounded and continuous, and fxx(Xu, Xu, u)σ2

u → fxx(Xs, Xs, s)σ
2
s a.s. as u → s. σ is also

bounded, thus from the dominated convergence theorem we have

lim
u→s

E(fxx(Xu, Xu, u)σ2
u) = E(fxx(Xs, Xs, s)σ

2
s) ,

so the integrand E(fxx(Xs, Xs, s)σ
2
s) in (B-2) is continuous in s for all s. Thus using the fundamental theorem of

calculus, we can differentiate (B-2) everywhere with respect to t to get

∂

∂t
E(f(Xt, Xt, t)) = E(ft(Xt, Xt, t) +

1

2
fxx(Xt, Xt, t)σ(Xt, Xt)

2) .

7By growth set, we mean the support of the random measure induced by the process Y on [0, T ], i.e. the complement of the largest open
set of zero measure.
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