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Abstract

We show how existing results for optimal trading strategies with linear temporary price impact/exponential
resilience or proportional transaction costs can be easily adapted for the more realistic situation when the drift
of the asset is unknown, so we have to project to the observable filtration generated by the asset price process,
using results from non-linear filtering theory. In particular, we observe that an arithmetic Brownian motion P
with unknown (constant) drift u is the continuation of a generalized bridge process under F¥ with the true drift
replaced with its unbiased estimate over a fixed time window®.

1 Introduction

Many price impact articles (and textbooks on the continuous-time Kalman filter) consider a semimartingale price
process with a drift process which is an OU process, but since the drift process is not directly observable, we cannot
easily estimate its paramaters, and even if the drift process were observable, we can still e.g. only compute MLE
or GMM estimates for its parameters which will typically have non-small sample variance unless the time window
under consideration is large (i.e. years in practice) and the model is well specified over this large time window
(which will seldom be the case in practice)?. One can use the Kalman filter combined with the E-M algorithm
to do this® (for which there built-in functions in Python for example), but from practical experience, we do not
recommend since the sample variance of the estimate for the mean reversion speed of the OU process will be too
large.

The alternate approach to this kind of problem (which we do not pursue here) is to use limit order book
imbalance to predict mid-price movements (see e.g. [CDJ18], [CDO23], [PRS23] and references therein), see also
[AD13] for an interesting approach when a moving-average term appears in the drift.

1.1 Outline of article

In the next subsection we introduce our Bachelier model with unknown drift, and make the canonical choice of
Gaussian prior for p at ¢t = 0 based on a price history of P going back to some time ty < 0 . We then re-write
the price process P in the form in (2) where the drift is the obvious conditional unbiased estimate of p; from a
standard result in filtering theory, the W term is a Brownian motion with respect to F¥, and we note that P is
the continuation of a Brownian bridge process under F¥, for which we have the usual explicit solution given in
(3). In Section 2, we show how the unknown drift can affect the optimal trading strategy for an agent subject to
linear temporary and transient price impact (with exponential kernel) using the main result in [NV22] and a large
liquidation penalty. In section 3, we turn our attention to the Bachelier version of the classical Merton problem but
with unknown drift and we give a necessary and sufficient condition for the agent to have positive expected P&L
when trading with uncertain drift, and we compute the leading order asymptotic approximation for the width of
the no-trade region for the case of non-zero transaction costs as in [KM15], but for the case of unknown drift.

1.2 Model setup

In this note, we consider a financial market living on a stochastic basis (Q, F, F;,P), where the filtration F =
{Fi}1o<t<r satisfies the usual conditions. P is the objective probability measure, and we assume the basis carries
a one-dimensional P-Brownian motion W. We consider a financial market with a single asset with P-dynamics

P, = Py+ ut+ oW, (1)

and F¥ will denote the filtration generated by P (augmented by P-null sets). We assume that o is known and y is
unknown to a financial agent and that P has been observed continuously since to < 0. The assumption that o is
known is natural since it can be computed from the observed quadratic variation of P over any subset of [to, 0] which
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2Note that if dS; = Yidt +odW;, where Y is an OU process: dY; = k(0 —Y:)dt + oy dBy with dWidB; = pdt and o is constant, then
S is also a Gaussian process
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can be estimated from the realized variance of P (see e.g. Ait-Sahalia&Jacod[AJ14] for details and convergence
results in this vein).

We specify an initial distribution f(u) for p at ¢t = 0, and assume that W is independent of p. The natu-
ral/canonical choice here (which we will henceforth assume unless stated otherwise) is that u ~ N (PB:Z“ , %),
since this is what we obtain when applying the usual confidence interval approach to estimate p using that
Py — P, ~ N(ut,0?[tg]), or from a Bayesian standpoint, f(u) is the posterior f(u|Py) for p using Bayes’ the-
orem if the initial (prior) distribution for p at ty is U([—n,n]), and we then let n — oo (i.e. we have a flat prior
for p at tg, see Appendix A for details). See also [BGP19] and [Driss22] for a Bayesian approach to this type of
problem using a Gaussian prior for . We then use the classical filtering result in where the true drift is replaced
by its conditional expectation.

_ Pi—Py

From the final part of the Appendix, we know that E(u|F}/) = - Hence the process W; defined by

tP,—P .
P, = P0+/ gy + oW, (2)
o u—to

is an ;" -Brownian motion, see e.g. Eq 4.5 in Bjork et al.[BDL10], Theorem 6.1 in [Chi] or Proposition 2 in [BGP19].
As mentioned in [BGP19], W is known as the innovation process in filtering theory.

Remark 1.1 This result appears counter intuitive since (2) does not contain p, but the result is saying that P in

(2) has the same law as P in (1) with the understanding that p in (1) is N(PS%Z”’, ﬁ—;l), and we can easily verify

this equivalence by comparing their sample covariances with Monte Carlo.

1.3 Basic properties of P under F*

Proposition 1.1 Under F¥, P satisfies the same (linear) SDE as the continuation of a Brownian bridge process
constrained to be at Py, att =tgy, but here t > 0 and ty < 0, and has the explicit solution:

dW
to — S '

to—t
P = P

¢ t

+ Ptof + (t()—t)(f/
to 0

Proof. See Appendiz B (or Eq 5.6.23 in [KS91]). m

Remark 1.2 From (1) we know that E(P?) < oo hence P is finite a.s., so P cannot explode in finite time, despite

the apparent mean-fleeing behaviour of P around P;, under ¥ in (2). In particular, P is a Markov process with
respect to F©, and we see that E(P;|Ps) satisfies the ODE

d E(P|Ps) — P,
—E(P|P) = — 2 ¢
dt ( t| ) t— tO
with solution
P, — P, N
E(P|Ps) = Py + ;_7%%(15—150) = Py +fis(t —to) (3)

for tg < 0 < s <t (this expression will be needed in (4) below).

2 Application to price impact problems

2.1 Unconstrained problem

We can now apply many well known price impact methods/results to P but working under F¥ - e.g., for an agent
subject to linear temporary price impact with no liquidation penalty where the price paid per share at time t is

S; = P, + kv and v, is the trading speed, using the same pointwise optimization argument with optional projection

as in section 4.1 of [FSS22], we know that the optimal buying speed with no liquidation penalty is v} = % where

R P, — P,
& = E(Pr—PIF) = uT-t) = ﬁ(T—t)

and with a non-zero transaction cost of size &
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Figure 1: Here we have simulated the optimal stock holding X; fives times for the problem in [NV22] but with p
unknown for parameters p = 0.05 (left) and p = 0 (right), with fixed parameters c = .2, k=1, p=1, A =1, ¢ =0,
0 = 1000, Yy =0, Py = 1 and ty = —1 with P,, = Py — p|to| in both plots. The grey dashed line is the solution when
w is known (which is deterministic, and is identically zero in the second plot) so we see that not knowing the true
value of u significantly affects the optimal strategy, and in the second plot we see it leads to trading when the agent
would not trade with perfect information about u. Note that the terminal liquidation penalty coefficient o > 1
here, so we are close to the case of perfect liquidation (which is also a round trip since Xy = 0). (Mathematica code
available on request)

2.2 Temporary price impact and exponential resilience with liquidation and running
inventory penalties

If the price process P belongs to the class of special semimartingales as defined in section 2 in [NV22], and the
agent is subject to temporary price impact plus transient price impact under the propagator model with exponential
resilience as in [NV22] with a running inventory penalty and finite liquidation penalty, then the standard variational
and optional projection argument used to derive the main Theorem 3.2 in [NV22] still works under the filtration
FP, so we just need to compute

1
ds

PS_PtO
S—to

P) = P,y + [ir(s — to) — Py, - P — Py, (4)

E(dA|FF) = E(u|F’) = E
(dAs|F) (f1s|F¢ ) ( s —t t—to

for s > t (where the third equality follows from (3) with s and ¢ swapped round); note this expression is needed for
Eq 3.6 in [NV22] (see numerical results in Figure 1). A similar (but simpler) formula (also just requiring E(dA,|Ff))
appears in Theorem 3.1 in [BMO20] for the case when there is no resilience, and the aforementioned formulae in
[BMO20] and [NV22] both require computing a matrix exponential.

We can similarly extend to the case of two or N-agents using section 2 in [NV23] to compute the (open-loop)
Nash equilibrium, although such results require the (possibly unrealistic) assumption that multiple agents can see
each others trading speeds. In the second plot of Figure 1, we see there is non-zero trading activity for a round trip
even though the agent would not trade with perfect information about p (since the true g = 0 in this case), so in
general for round-trip problems there will be a critical range (u—, py) of u-values straddling zero, inside which the
expected P&L conditioned on knowing p if the agent trades without knowledge of p is negative). More generally,
when X # 0 this critical range need not include zero due to liquidation penalties.

Remark 2.1 For all the price impact problems considered, all that matters ultimately is E(u,|F/) so we can replace
the Brownian motion W above with any sufficiently well behaved martingale M, and the choice of martingale does
not affect the optimal trading strategy (unless we start using non-linear utility functions). In this case, since

Po= Py, = p(0—to)+ Mo — M,

so the natural choice of initial distribution for p now is the law of (Py — Py, — (Mo — My,))/(0 — o) with Py and
P, taking their observed values. Note also that Theorem 3.6 in [NV22] does not require P to be continuous, so
one could assume P is a Lévy process, e.g. a CGMY process.

3 The Merton problem with unknown drift

In this section, we remove the friction (i.e. the price impact) but we now allow the agent to be risk-averse by using
a non-linear utility function. Assuming

dS; = pdt + odW; (5)



with unknown g as in section 2 for P, we consider the Merton problem with » = 0, and let ¢; denote the agent’s
stock holding at time ¢, which we assume has to be F;-adapted (note we are working in a Bachelier setting here
because otherwise the solution for ¢*(5,t) below becomes rather cumbersome). Then the total wealth of the agent
X; evolves as

dXy = ¢:dS;

so the HJB equation for the value function V (S, x,t) = supye 4 Es x +(U(X7)) is

1 1
V;f + /L(S)VS + 50—2‘/55 + supd)[q&u(S)Vm + 50—2¢2sz + O—QQSVSI} = 0
with p(S) = St%f;o, and we can then solve for ¢* in feedback form, and then re-write as a non-linear PDE. For the
case when U(z) = —e~ %%, using the ansatz V (S, z,t) = —e~*(@+w(S0) we find that
1, 1 (8—5)°
= -2 T Ot) 0
WE oSS S G ac?

for which the terminal condition is w(S,T") = 0 if there is no liquidation penalty. This can be solved in closed-form
(using Feynman-Kac) to give

1 (T —1t)(S? =288, + S + (to — t)o?) T —to
UJ(S7 t) 20[( (t — to)(T — t(])O'Q + o8 t— to )
and
vop A Si=S,
oSt = ac?  ac®(t—ty) (©)
Note that

i o[5S g gyt loa(T —to)
]E(/O 6(S,0)dS,) = ]E(/O Do) = (5= Su)

ac?  logltol

so we have negative expected P&L if and only if (So — St,) < 0.

Note this is of the same form as the solution ¢ = ~L for the problem when p is known (note this is for the
Bachelier model in (5) here not the case when S is Geometric Brownian motion for which the solution is S /=),
but now p has been replaced with ji;. Thus even if the true p = 0, we see that it is optimal for the agent to trade
with partial information about y (see simulation in Figure 2), although ¢*(S,t) — -£5 as t — co. Note ¢} is not
generally equal to the “myopic” trading strategy ju;/(co?) when S follows a more general Itd process of the form

dS; = pdt + ordWr, see e.g. [KO96].

Remark 3.1 For the case of log utility U(z) = logx when S is a general semimartingale dS; = S;(udt + oy dWy),
it is well known that ¢} = f:—;, so in this case ¢* = % (this is known as the growth optimal portfolio).
t t

Remark 3.2 In practice, one could argue that one should not start trading unless we have already rejected the
null hypothesis that u = 0.

3.1 Adding small proportionate transaction costs

From (6) we see that

dsS;
de* (S, t —_—
(S 1) ac?(t — to)
so ‘il(g;: = a202(17t0)2’ and (from the formal computations in section 2.1 in [KM15], or section 4.1 in [KL13]) the

leading order term for the optimal trading strategy with proportional transaction costs of size ¢ < 1 and fixed time
horizon T' > 0 with exponential utility function as above is to engage in the minimal amount of trading to keep ¢;
within ¢ + A¢y, where

Agy = £(5-

and we see that the no-trade region (NTR) shrinks when ¢ goes large or when S; goes small (see numerics below).
Note that the leading order width of the NTR is here is zero when the drift is known, since ¢* is constant in this
case.
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Figure 2: On the left we see a Monte Carlo simulation of the optimal stock holding ¢; with p unknown (blue) and
u known (grey), and the corresponding stock price process S; (right plot) for the Merton problem with exp utility
and unknown drift with to = —1, Sy, = .95, So =1, T =20, o = 1, 0 = .2 and true p = 0.05. Since Sy > Sy, by
assumption, the agent initially held a long position but went short as the stock price went down.
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Figure 3: Here we have plotted the upper boundary for the No-Trade region (blue) with proportional transaction
costs of size €, and the optimal stock holding ¢} (in grey) when the true drift is unknown, for ¢ty = —1; p = 0.05,
o=.2,e=.005; Sy, = So—ulto], So =1; T =1, a =1, and ¢ starting on the upper boundary. Note that a smaller
investor needs to choose a larger a value to ensure a smaller ¢ since we are working with exp utility.

3.2 Concluding remarks

We have shown how known results for optimal trading strategies with linear temporary price impact/exponential
resilience or proportional transaction costs are easily adapted for the more realistic situation when the drift of the
asset is unknown (by switching to the filtration generated by the price process P) and warned against the common
trend of using an OU process for the drift as it’s almost impossible to estimate its parameters with low sample
variance in practice.

In Section 2, we saw numerically how the unknown drift can make the optimal liquidation strategy highly
stochastic for an agent subject to linear temporary and transient price impact (with exponential kernel) using
the main result in [NV22], even though the solution is deterministic when the drift is known. In particular, not
knowing the the drift leads to non-zero trading activity for round trips when the true drift is zero, which is clearly
sub-optimal since the agent has no “edge” on the market in this case. Going forward, one could look to numerically
solve the (double obstacle) free boundary problem (FBP) for the transaction costs problem in Section 3.1 with
unknown drift (see e.g. [DY09] for the known drift case), or the (related) problem of computing the optimal trading
stategy for a liquidity taker in a liquidity pool with an automated market maker (e.g. the Uniswap protocol), where
the transaction cost is now the pool fee (which is a stochastic permanent price impact problem). The domain for
the PDE for these problems is a cube since the relevant state variables are (t,St,Y;) where Y is the agents risky
wealth, or one could also look to learn the upper and lower free boundaries using a DNN.
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A Computing E(M|(Ps)s€[to,t])

If My = ut + oWy, then for a flat prior for g on R at ¢ (which is clearly an improper prior), using Bayes’ formula
and Girsanov’s theorem, the posterior p(iu|(Ps)sefto,4) of p at t > 0 (given (Ps)sep,q) s

R

Likelihood function of (Ps)seft.4
d(P — P)
o

p(ul (Ps)se[to,t])

— leftto ’desiéftto ’Y2d5QO( )
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Py—Py,
t—to

where Qo denotes the Wiener measure on (C([to,t]), B(C([to,t])),Qo), ¥ = u/o and G =

for p is N(P;:i?o , %) as one would expect, so (formally at least) E(u|(Ps)scjt,) = 1?:::0.

, so the posterior

Po— Py,

If we modify this analysis to instead use a prior at ¢ = 0 which is N( ,02/|to]), then we also find that

P, — P, 0-to
E(ul(Ps)sefo,n) = —=5*-
B Proof of SDE for P with respect to F*
Appying Tto’s lemma to (3) we see that
Py dt dW, b dw,
dp, = —-2dt + P,,— + (to—t - dt
t T t°t0+<0 e U/O to—s
dt - Edw,
= (Pto—Po)*—FO'th—O'/ —dt
to 0 to — S
dt _ P, B t
= (P, — P))— + cdW, — -2 Pt
(P O)to + oale (toft to toto(toft))
dt _ P, t
= Py— +odW, — (—— —P,——)dt
gy OO (to—t toto(to—t))
P-P -
= “dt + odW,
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