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Abstract

We characterize the asymptotic behaviour of close-to-the-money VIX call options under a
generalized Rough Heston model with an exogenously specified initial variance term structure ξ0(.)

and strike VIX0e
xT

1
2
−H

as the maturity T → 0, using an explicit formula for sampling VIXT . Using
the usual definition VIX2

T := 1
∆

∫ T+∆

T
ξT (u)du where ξt(u) := E(Vu|Ft), we find that (VIX2

T −
VIX2

0)/T
1
2
−H satisfies a large deviation principle (LDP) as T → 0 with rate function Iρ=1(x

c
) and

speed T−2H where c = ν

Γ(α)( 1
2

+H)
∆H− 1

2 and Iρ=1(.) is the corresponding rate function for the

re-scaled log stock price (XT − X0)/T
1
2
−H in the main Theorem 3.3 in [FGS21] for the special

case where ρ = 1. This implies that the VIX smile exhibits maximal positive power-law skew as
T → 0 in some sense, and we compute an explicit small log-moneyess expansion for the asymptotic
smile which shows that asymptotic VIX implied volatility has positive skew and negative convexity
at-the-money, consistent with empirical observations. In the final section, we also formally show
that Vt has a well defined asymptotic distribution as t → ∞, and we give an explicit formula for
the mgf of V∞ in terms of the solution to a VIE.1

1 Introduction

The Rough Heston stochastic volatility model was introduced in Jaisson&Rosenbaum[JR16], and
(using C-tightness arguments from Jacod&Shiryaev[JS13]) they show that the model arises naturally as
a weak large-time limit of a high-frequency market microstructure model driven by two nearly unstable
Hawkes process. [ER19] show that the characteristic function of the log stock price for the Rough
Heston model admits a quasi-closed form solution via the solution to a non-linear Volterra integral
equation (VIE) (see also [EFR18] and [ER18]), and the variance curve for the model evolves as dξu(t) =

κ(u−t)
√
VtdWt, where κ(t) is the usual fractional kernel tH−

1
2 for the V process multiplied by a Mittag-

Leffler function. The instantaneous variance process V for the model is (H − ε)-Hölder continuous
like fractional Brownian motion (see e.g. Theorem 3.2 in [JR16]) and the model exhibits power law
skew in the small-time limit (see Theorem 3.1 in [FGS21] and Corollary 3.4 in [FSV21]). [DJR19]
introduce an extension of this model known as the super Rough Heston model which incorporates the
empirically observed strong Zumbach effect as a weak limit of a market microstructure model driven by
a quadratic Hawkes process (also using C-tightness arguments) but this model is no longer affine and
thus not directly amenable to VIE techniques or Edgeworth and large deviation asymptotics, so it is
difficult to prove anything about the qualitative behaviour or dynamics of the smile (and the Zumbach
term is a drift term and hence very unlikely to affect leading order large deviation asymptotics). A
variant of this model is used in [GJR20], which attains a better fit to SPX and VIX options in practice
than conventional rough volatility models, but Guyon[Guy20b] remarks if we calibrate this model
to the VIX smile, the short-maturity at-the-money SPX skew is still too small compared to what is
observed in practice (see below for discussion on the addition of jumps in [FS21]).

The theoretical value of the VIX index at time t is VIXt =
√
− 2

∆E(log St+∆

St
|Ft), where St is the

S&P 500 index value at time t, ∆ = 30 days and Ft is the market filtration, so VIX2
t is effectively a

rolling 30-day Variance swap rate. A VIX option is a European call or put option on VIXT for some
maturity T , and if we replace the spot value S0 in the Black-Scholes formula with the VIX future
price E(VIXT ), we can define the implied volatility of a VIX call or put in the usual way by inverting
the Black-Scholes formula. VIX options are very liquid in practice (although their bid/offer spreads
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are still comparatively high), and empirical VIX smile typically exhibit positive skew with negative
convexity (see plots in [GJR20],[Guy20],[DeM18],[HJT20] et al.), although e.g. Markovian diffusion
models like the standard Heston model can give rise to negative VIX implied vol skews..

In this article, we work with a generalized version of the Rough Heston model as used in [GR19]
with initial variance curve ξ0(t) and the corresponding dynamics of the forward variance ξt(u). We first
derive an explicit formula for simulating VIXT in Eq (3) (note that no such formula exists for e.g. the
quadratic rough Heston model in [GJR20]) and we then perform a formal small T -expansion of ξT (u)

which suggests that (VIX2
T − VIX2

0)/T
1
2−H ∼ cX̃T /T

1
2−H in some sense as T → 0 for some constant

c > 0, where X̃t =
∫ t

0

√
VsdWs is the martingale component of the log stock price for the driftless

rough Heston model when the correlation ρ = 1. This leads us to guess that (VIX2
T − VIX2

0)/T
1
2−H

satisfies the same small-time LDP as cX̃T /T
1
2−H , for which we can readily compute a small-time LDP

with minor amendments to the main arguments in [FGS21] to allow for non-flat ξ0(t). We then make

this rigorous by showing that (VIX2
T − VIX2

0)/T
1
2−H and cX̃T /T

1
2−H are exponentially equivalent as

T → 0 and hence satisfy the same LDP, and this is proved using a minor variant/extension of Theorem

7.1 in Abi Jaber et al.[ALP19] for the exponential-affine formula for E(euX̃T+(f∗X̃)T |FWt ) for a general
function f and u ∈ R such that T is less than the explosion time T ∗(u). Specifically we show that

ε2H logE(eε
−αp(VIX2

ε−VIX2
0−cX̃ε)) = V0I

1−αφε(p, 1) where α = H + 1
2 , and φε(p, t) satisfies a family

of VIEs whose solution tends uniformly to zero on [0, 1] as ε → 0 for all p ∈ R and Ir denotes the
r-th order fractional integral operator. We later translate this LDP into VIX call option and implied
volatility asymptotics, and we compute a small log-moneyness expansion for the asymptotic VIX smile
using expansions previously derived in [FGS21] which yields tractable expressions for the overall level,
skew and convexity of the short-end VIX smile. We also mention Proposition 18 in [AGM18] which
shows that the derivative of the VIX implied volatility with respect to log-moneyness at-the-money
tends to a finite constant as T → 0 (as opposed to exploding power-law behaviour ∝ TH−

1
2 ) for a

standard (and mixed) rough Bergomi-type model, and we have verified this behaviour numerically.
However numerical computations suggest that for the rough Heston model, the [AGM18] measure of

at-the-money skew does indeed appear to be O(TH−
1
2 ) as T → 0, as one would guess from (19) below.

Unfortunately, since the limiting VIX smile only depends on the factor ν/
√
V0 and not on ρ, we

cannot simultaneously fit the overall level and skew of observed limiting VIX smile using the standard
rough Heston model. To circumvent this issue, the companion article [FS21] enriches the model with
an additional independent CGMY (a.k.a. KoBoL)-type Lévy process L as in [FSV21] with Y ∈ (1, 2),
and using a simple modification of the main result in [FSV21] for the Edgeworth regime where log-
moneyness scales like x

√
T , we show that one can simultaneously use the rough Heston parameters to

fit the at-the-money VIX level and skew as T → 0, and the CGMY parameters to fit the observed level,
at-the-money correction and at-the-money skew of SPX options as T → 0 (using the main Theorem
in [FSV21] adapted for our rough Heston V process), and the drift of the V process can be made to
be fully consistent with the initial observed variance curve structure.

In section 3, we formally show that Vt has a well defined stationary distribution as t→∞, and we
give a semi-explicit formula for its mgf in terms of the solution to a non-standard non-linear VIE, and
we verify that the result is consistent with classical result that V∞ has a Gamma distribution when
H = 1

2 . We also compute the law of V∞ explicitly for a rough-Bergomi type model with a Gamma
kernel.

2 The model

We consider a generalized Rough Heston model for a log stock price process Xt = logSt of the same
form in Gatheral&Radoičič[GR19]:

dXt = −1

2
Vtdt+

√
Vt(ρdWt + ρ̄dBt)

Vt = ξ0(t) + cα

∫ t

0

(t− s)α−1ν
√
VsdWs (1)

for H ∈ (0, 1
2 ), α = H + 1

2 , cα = 1
Γ(α) and ν > 0, with some initial variance curve ξ0(t) with ξ0(.)

continuous, where W , B are two independent Brownian motions, ρ̄ =
√

1− ρ2 with |ρ| ≤ 1, and we
assume X0 = 0 and zero interest rate without loss of generality. Note we do not have a mean reversion
term λ in (1) since such a term will not materially affect the asymptotics at the leading order large
deviations level that we consider in this article once we re-calibrate to the observed initial variance
curve ξ0(t), but would add further headache to our already lengthy analysis in e.g. Appendix B and
Lemma 2.4.

It is not known whether we have pathwise uniqueness for (1) even when ξ0(t) is constant because√
v is not Lipschitz at zero (see section 4.2.3 in [JMP20] for more on this), but we do have weak
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uniqueness (see Theorem 3.4 in [ALP19]) and uniqueness in law for V on C([0, T ]), since we can
explicitly compute an exponential-affine formula for the Fourier transform of V on pathspace in terms
of a Volterra integral equation with a unique solution, see Appendix B (which is based on Theorem
7.1 in [ALP19]) (see also Theorem 6.1 in [ALP19]).

To clarify these points further, if we assume we have two solutions U and V to (1), then

E((Vt − Ut)2) =
1

Γ(α)2
E(

∫ t

0

(t− s)2H−1ν(
√
Vs −

√
Us)

2ds) ≤ 1

Γ(α)2
E(

∫ t

0

(t− s)2H−1ν|Vs − Us|ds

≤ 1

Γ(α)2

∫ t

0

(t− s)2H−1νE((Vs − Us)2)
1
2 ds

so f(t) := E((Vt − Ut)2) satisfies

f(t) ≤ 1

Γ(α)2

∫ t

0

(t− s)2H−1ν
√
f(s)ds (2)

but unfortunately there is a non-zero solution to f(t) =
∫ t

0
(t−s)2H−1ν

√
f(s)ds in addition to the trivial

zero solution (see Example 3.1.18 in [Brun17] for general H ∈ (0, 1) and for H = 1
2 , f(t) = 1

4ν
2t2),

so we cannot directly use a comparison principle in e.g. Appendix A.2 in [ACLP19] to assert that
f(t) ≤ 0. If however we replace the

√
v coefficient in (1) with a Lipshitz function σ(v) which agrees

with
√
v for v ≥ δ > 0, this comparison theorem approach does show that we have pathwise uniqueness

for V up to the hitting time of V to δ for any δ > 0 (see also [JMP20]). One can also adapt Lemma
4.10 in [JMP20] to show that Vt > 0 Lebesgue a.e. even if V hits zero, and it is currently an open
problem for what parameter combinations this is possible.

We let Ft = FW,Bt . Then we know that ξt(u) := E(Vu|Ft) is given by

ξt(u) = ξ0(u) +
ν

Γ(α)

∫ t

0

(u− s)H− 1
2

√
VsdWs

so

dξt(u) =
ν

Γ(α)
(u− t)H− 1

2

√
VtdWt

and VIX2
T := − 2

∆E(log ST+∆

ST
|FT ) = 1

∆E(
∫ T+∆

T
Vudu|FT ) = 1

∆

∫ T+∆

T
ξT (u)du.

2.1 The small-time LDP for (VIX2
T − VIX2

0)/T
1
2
−H

Using the stochastic Fubini theorem and Taylor’s remainder theorem, we see that

VIX2
T =

1

∆

∫ T+∆

T

ξT (u)du

=
1

∆

∫ T+∆

T

(ξ0(u) +

∫ T

0

ν

Γ(α)
(u− s)H− 1

2

√
VsdWs)du

=
1

∆

∫ T+∆

T

ξ0(u)du + c1

∫ T

0

((T + ∆− s) 1
2 +H − (T − s) 1

2 +H)
√
VsdWs

=
1

∆

∫ T+∆

T

ξ0(u)du + c1

∫ T

0

((T + ∆− s) 1
2 +H − (T − s) 1

2 +H)dX̃s (3)

where c1 = ν
∆Γ(α)( 1

2 +H)
and

X̃t =

∫ t

0

√
VsdWs

is the martingale component of the log stock price process X when ρ = 1.
Then using that

1

∆

∫ T+∆

T

ξ0(u)du =
1

∆

∫ ∆

0

ξ0(u)du +
1

∆
T (ξ0(∆)− ξ0(0)) + o(T ) = VIX2

0 + O(T )

we (formally) expect that

VIX2
T −VIX2

0

T
1
2−H

∼ c1∆
1
2 +H

T
1
2−H

∫ T

0

√
VsdWs =

cX̃T

T
1
2−H

(4)

3



as T → 0, where

c := c1∆
1
2 +H =

ν

Γ(α)α
∆H− 1

2 .

From the main Theorem 3.3 in [FGS21] we know that X̃T /T
1
2−H satisfies an LDP with some rate

function Iρ=1(x) and speed T−2H as T → 0, so based on above we conjecture the following result, for
which the full proof is given below.

Theorem 2.1 (VIX2
T − VIX2

0)/T
1
2−H satisfies the LDP as T → 0 with speed T−2H and rate function

J(x) := Iρ=1(xc ) where Iρ=1(x) is the same as I(x) in Theorem 3.3 in [FGS21] for the special case
when ρ = 1, and J(x) is the Fenchel-Legendre transform of

Λ̄ρ=1(cp) := lim
T→0

T 2H logE(e
p
Tα (VIX2

T −VIX2
0))

for p ∈ (−∞, p+

c ) and Λ̄ρ=1(cp) = +∞ otherwise, where Λ̄ρ=1 and p+ are the same as Λ̄ and p+ in
Theorem 3.3 in [FGS21] for the special case where the correlation ρ in [FGS21] is +1, and c is defined
above.

The following Proposition extends and streamlines the proof of main Theorem 3.1 in [FGS21] to
the case of the generalized rough Heston model in (1).

Proposition 2.2 (XT + 1
2 〈X〉T )/T

1
2−H and XT /T

1
2−H satisfies the same LDP as T → 0 as in

Theorem 3.3 in [FGS21].

Proof. Recall that Xt+ 1
2 〈X〉t is just the martingale component of the log stock price Xt. Then from

Theorem B.1 in Appendix B, we know that

E(ep(Xt+
1
2 〈X〉t)) = e

∫ t
0
ξ0(t−s)( 1

2p
2 + pρνψ(p,s)+ 1

2ν
2ψ(p,s)2)ds = e

∫ t
0
ξ0(t−s)Dαψ(p,s)ds

for t ∈ [0, T ∗ψ(p)), where ψ(p, .) satisfies the fractional Riccati VIE:

ψ(p, t) =

∫ t

0

cα(t− s)α−1(
1

2
p2 + pρνψ(p, s) +

1

2
ν2ψ(p, s)2)ds (5)

and T ∗ψ(p) > 0 is the explosion time for ψ, and (by e.g. Appendix A) this solution is unique. Then

E(e
p
εα ( 1

2 〈X〉εt+Xεt)) = e
∫ εt
0
ξ0(εt−s)( 1

2
p2

ε2α
+ p
εα ρνψ( p

εα ,s)+
1
2ν

2ψ( p
εα ,s)

2)ds

and

ψ(
p

εα
, εt) =

∫ εt

0

cα(εt− s)α−1(
1

2

p2

ε2α
+

p

εα
ρνψ(

p

εα
, s) +

1

2
ν2ψ(

p

εα
, s)2)ds

= ε

∫ t

0

cα(εt− εs)α−1(
1

2

p2

ε2α
+

p

εα
ρνψ(

p

εα
, εs) +

1

2
ν2ψ(

p

εα
, εs)2)ds

for t ∈ [0, 1
εT
∗
ψ( p

εα )). Then multiplying both sides by εα, we see that ψε(p, t) := εαψ( p
εα , εt) satisfies

ψε(p, t) =

∫ t

0

cα(t− s)α−1(
1

2
p2 + pρνψε(p, s) +

1

2
ν2ψε(p, s)2)ds

for t ∈ [0, 1
εT
∗
ψ( p

εα )), so we see that ψε(p, .) and ψ(p, .) satisfy the same VIE, and hence are equal.
Then

ε2H logE(e
p
εα ( 1

2 〈X〉εt+Xεt)) = ε2H log e
∫ εt
0
ξ0(εt−s)( 1

2
p2

ε2α
+ p
εα ρνψ( p

εα ,s)+
1
2ν

2ψ( p
εα ,s)

2)ds

= ε2H log eε
∫ t
0
ξ0(εt−εs)( 1

2
p2

ε2α
+ p
εα ρνψ( p

εα ,εs)+
1
2ν

2ψ( p
εα ,εs)

2)ds

=

∫ t

0

ξ0(εt− εs)(1

2
p2 + pρνψ(p, s) +

1

2
ν2ψ(p, s)2)ds

→ V0

∫ t

0

(
1

2
p2 + pρνψ(p, s) +

1

2
ν2ψ(p, s)2)ds = Λ̄(p, t) (6)

as ε→ 0 if t < T ∗ψ(p) using the bounded convergence theorem, since ξ0(.) is continuous at zero and ψ

is bounded on [0, t] for if t < T ∗ψ(p). From Lemma 2.3.9 in [DZ98], we know that Λ̄(p, t) is convex in
p, and from (5) we also know that

d

dt
Λ(p, t) =

1

2
p2 + pρνψ(p, t) +

1

2
ν2ψ(p, t)2

4



so Λ(p, t) is differentiable in t.

Using the scaling relation in Corollary 3.4 in [FGS21] we also know that Λ(p, 1) = p
2H
α Λ(sgn(p), |p| 1α ),

so setting Λ(p) := Λ(p, 1) we know that Λ(p) is differentiable in p. Moreover, the quadratic Q(w) :=
1
2p

2 + ρpνw2 + 1
2w

2 has no real roots so we are in Case A or B in [GGP19] where the VIE for ψ(p, .)
has no fixed point, so T ∗ψ is finite and explodes at rate const./(T ∗ψ(p)− t)α (see Lemma 3 in [GGP19]).

From the integral in (6) and the aforementioned known explosion rate and the scaling relation,
we see that Λ̄(p, t) also tends to +∞ as p ↗ p+ = T ∗ψ(+1)α or as p ↘ p− = −T ∗ψ(−1)α, and (by
convexity and differentiability) Λ is also essentially smooth. Moreover, from the monotonicity of the
Lp-norm, we know that Λ̄(p, t) =∞ for p /∈ (p−, p+) as well. Hence by the Gärtner-Ellis theorem from

large deviations theory (see Theorem 2.3.6 in [DZ98]), (Xε + 1
2 〈X〉ε)/ε

1
2−H satisfies the LDP as ε→ 0

with speed ε−2H and rate function I(x). Finally the LDP for Xε/ε
1
2−H is obtained using exponential

equivalence as in [FGS21].

Proof. (of Theorem 2.1). Setting T = ε to make the notation consistent with [FGS21] and integrating
(3) by parts, we see that

VIX2
ε −

1

∆

∫ ε+∆

ε

ξ0(u)du = VIX2
ε − VIX2

0 − ζ = c1

∫ ε

0

((ε+ ∆− s) 1
2 +H − (ε− s) 1

2 +H)dX̃s (7)

= c1∆
1
2 +HX̃ε − c1α

∫ ε

0

((ε− s)H− 1
2 − (ε+ ∆− s)H− 1

2 )X̃sds

= c1∆
1
2 +HX̃ε +

∫ ε

0

f(ε− s)X̃sds

= cX̃ε + (f ∗ X̃)ε (8)

where ζ := 1
∆

∫ ε+∆

ε
ξ0(u)du − VIX2

0 = O(ε) and f(s) := c1α((s + ∆)H−
1
2 − sH− 1

2 ) and we note that
f ∈ L2. As discussed above, from the main Theorem 3.1 in [FGS21] we know that the leading order

term cX̃T /T
1
2−H satisfies the stated LDP as T → 0, so the issue is just to argue away the remainder

term, using exponential equivalance as in [FGS21].

From Theorem B.1 (which is adapted from Eqs 2.8-2.10 in [AE19] and Lemma 7.3 in [ALP19]), we
know that

E(ep
∫ ε
0
f(ε−s)X̃sds) = e

∫ ε
0
ξ0(ε−s)Dαψ2(p,s)ds = e

∫ ε
0
ξ0(ε−s)g(p,s)ds

where

ψ1(p, t) = p

∫ t

0

f(s)ds

ψ2(p, t) =

∫ t

0

cα(t− s)α−1(
1

2
ψ1(p, s)2 + ψ1(p, s)νψ2(p, s) +

1

2
ν2ψ2(p, s)2)ds (9)

for ε ≤ Tψ2
(p) where Tψ2

(p) is the explosion time for ψ2 (note that g(p, t) := Dαψ2(p, t) = 1
2ψ1(p, t)2 +

ψ1(p, t)νψ2(p, t) + 1
2ν

2ψ2(p, t)2) , and recall that f(s) := c1α((s+ ∆)H−
1
2 − sH− 1

2 ). We first note that

ψ1(ε−αp, εt) =
p

εH+ 1
2

c1α

∫ εt

0

((s+ ∆)H−
1
2 − sH− 1

2 )ds = pcε−αhε(t) (10)

where hε denotes the bounded, continuous function

hε(t) := ∆−
1
2−Hα

∫ εt

0

((s+ ∆)H−
1
2 − sH− 1

2 )ds ≤ 0

defined for t ∈ [0, 1], which tends to zero pointwise as ε→ 0 (this will be needed below). Then

ψ2(pε−α, εt) =

∫ εt

0

cα(εt− s)α−1(
1

2
ψ1(pε−α, s)2 + ψ1(pε−α, s)νψ2(pε−α, s) +

1

2
ν2ψ2(pε−α, s)2)ds

= ε

∫ t

0

cα(εt− εs)α−1(
1

2
ψ1(pε−α, εs)2 + ψ1(pε−α, εs)ρνψ2(pε−α, εs) +

1

2
ν2ψ2(pε−α, εs)2)ds

= εα
∫ t

0

cα(t− s)α−1(
1

2
(pcε−αhε(s))

2 + pcε−αhε(s)νψ2(pε−α, εs) +
1

2
ν2ψ2(pε−α, εs)2)ds

for t ∈ [0, 1
εTψ2

(ε−αp)). Multiplying by εα and cancelling powers of ε, we see that

ψε2(p, t) := εαψ2(pε−α, εt) =

∫ t

0

cα(t− s)α−1(
1

2
(pchε(s))

2 + pchε(s)ρνψ
ε
2(p, s) +

1

2
ν2ψε2(p, s)2)ds

5



i.e. ψε2(p, t) satisfies

Dαψε2(p, t) =
1

2
(pchε(t) + νψε2(p, t))2 . (11)

Then we see that

ε2H logE(epε
−α(VIX2

ε−ζ−VIX2
0−cX̃ε)) = ε2H logE(epε

−α ∫ ε
0
f(ε−s)X̃sds)

= ε2H log e
∫ ε
0
ξ0(ε−s)g(pε−α,s)ds

= ε2H log eε
∫ 1
0
ξ0(ε−εu)g(pε−α,εu)du

= ε2α

∫ 1

0

ξ0(ε− εu)g(pε−α, εu)du

=

∫ 1

0

ξ0(ε− εu)gε(p, u)du

=

∫ 1

0

ξ0(ε− εu)
1

2
(pchε(s) + νψε2(p, s))2ds .

where gε(p, u) := g(pε−α, εu).

Recall that hε(t)→ 0 as ε→ 0, so we expect ψε(t) to tend to zero as well. To use Theorem 13.1.1
in [GLS90] to prove this, we first need to verify uniqueness for the solution ψε, which we can do using
the general argument given in Appendix A.

Since (11) with hε replaced by zero has a unique solution equal to the zero function, from Theorem
13.1.1 i) in [GLS90] we know there is a subsequence εn such that ψεn(p, t) converges uniformly to zero
on [0, 1]. Now suppose ψε(p, .) does not converge uniformly to zero. Then we can find a subsequence
εk such that ψεk(p, .) stays uniformly far from zero for all k ∈ N. This subsequence has no subsequence
that converges to zero, which contradicts Theorem 13.1.1 i) in [GLS90].

Then using (11) and the bounded convergence theorem and the continuity of ξ0(t) at t = 0 we see
that

lim
ε→0

ε2H logE(epε
−α(VIX2

ε−ζ−VIX2
0−cX̃ε)) = lim

ε→0

∫ 1

0

ξ0(ε− εu)Dαgε(p, u)du = 0 (12)

for all p ∈ R, and since ζ = O(ε) the limit is unchanged if we remove ζ here. Finally, setting
RT := VIX2

T −VIX2
0 − cX̃T , and using (12) we see that for x > 0 and p > 0

lim
T→0

T 2H log P(
RT

T
1
2−H

> x) ≤ lim
T→0

T 2H log E(e
p

T2H (
RT

T
1
2
−H
−x)

) = 0− xp

and taking the inf over p ≥ 0 we see that the left hand side is −∞. Similarly for x < 0 and p < 0

lim
T→0

T 2H log P(
RT

T
1
2−H

< x) ≤ lim
T→0

T 2H log E(e
p

T2H (
RT

T
1
2
−H
−x)

) = −xp

and again we can take the inf over p ≤ 0. Combining these observations, we see that

lim
T→0

T 2H log P(| RT
T

1
2−H
| > x) = −∞

which shows that (VIX2
T − VIX2

0 − ζ)/T
1
2−H and cX̃T /T

1
2−H are exponentially equivalent as T → 0

(where ζ is defined in (7)) (see Definition 4.2.10 in [DZ98]), so the LDP follows from Theorem 4.2.13
in [DZ98] (as used in [FGS21]). Finally we can remove the ζ term here since ζ is deterministic and

o(T
1
2−H) so (VIX2

T −VIX2
0)/T

1
2−H and cX̃T /T

1
2−H are also exponentially equivalent.

Remark 2.1 The lower bound for p in Theorem 2.1 is −∞ (as opposed to some finite negative
constant p−) because for ρ = 1 and p < 0, Λ̄ρ=1(.) falls under case C for the ABCD classification used
in [GGP19] (for our case we have to use driftless versions of the quantities defined in Eq 7 and 8 in
[GGP19]; specifically c1(u) = 1

2u
2, e0(u) = 1

2ρνu and e1(u) = e0(u)2 − 1
4ν

2u2, because we are working

with X̃ not the true log stock price process X). But since the ρ value associated with the X̃ process
is 1, we are in the special double root case for Eq 10 in [GGP19] where e1(u) = 0 (borderline between
C and B), but since we still fall in Case C, there is no explosion for the VIE in Eq 24 in [FGS21] for
any negative p-value.

Remark 2.2 For the driftless case where ξ0(t) ≡ V0, using a simple ansatz and local martingale
arguments, Proposition 4.6 in [GK19] derives the following exponential-affine formula for the mgf of∫ T+∆

T
ξT (u)du:

E(eh
∫ T+∆
T

(ξT (u)−V0)du) = eV0

∫ T
0
g(T+∆−u)du = eV0

∫ ∆+T
∆

g(s)ds
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for h in a certain interval, where g satisfies the non-standard VIE g(t) = 1
2 (
∫ t

0
ν

Γ(α) (t−v)H−
1
2 g(v)dv)2

for t ≥ ∆ and g(t) = h for t ∈ [0,∆] (note g is discontinuous at t = ∆ or else we have a contradiction).
This is clearly very relevant for pricing VIX options at non-zero maturities using Fourier inversion
methods (see Subsection 2.4 for more details), but we will not need to use this VIE in this article.

2.2 VIX call option asymptotics

We now translate the LDP in Theorem 2.1 into small-time asymptotics for VIX call options for the
same large deviations regime used in [FGS21]:

Corollary 2.3 For x > 0 we have the following asymptotic behaviour for close-to-the money VIX call
option prices:

lim
T→0

T 2H logE((VIXT −VIX0e
xT

1
2
−H

)+) = −J(2VIX2
0x)

where J is the rate function defined in the main Theorem 2.1.

Proof. See Appendix D.

Remark 2.3 For x < 0 (using very similar arguments), we obtain the following small-time behaviour
for close-to-the-money VIX put options:

lim
T→0

T 2H logE((VIX0e
xT

1
2
−H
−VIXT )+) = −J(2VIX2

0x) .

2.3 VIX future and implied volatility asymptotics

Lemma 2.4
VIX2

T−VIX2
0√

T
tends weakly to c

√
V0Z, where Z is a standard Normal.

Proof. From Theorem B.1 (which is adapted from Eqs 2.8-2.10 in [AE19] and Lemma 7.3 in [ALP19]),
we know that

E(epcX̃ε+p
∫ ε
0
f(ε−s)X̃sds) = e

∫ ε
0
ξ0(ε−s)Dαψ2(p,s)ds = e

∫ ε
0
ξ0(ε−s)g(p,s)ds

where

ψ1(p, t) = p(c+

∫ t

0

f(s)ds)

ψ2(p, t) =

∫ t

0

cα(t− s)α−1(
1

2
ψ1(p, s)2 + ψ1(p, s)νψ2(p, s) +

1

2
ν2ψ2(p, s)2)ds (13)

for ε ≤ T ∗ψ2
(p) where T ∗ψ2

(p) is the explosion time for ψ2 (where g(p, t) := Dαψ2(p, t) = 1
2ψ1(p, t)2 +

ψ1(p, t)ρνψ2(p, t)+ 1
2ν

2ψ2(p, t)2) , and recall that f(s) := c1α((s+∆)H−
1
2 −sH− 1

2 ). We first note that

ψ1(ε−
1
2 p, εt) = pε−

1
2 c +

p

ε
1
2

c1α

∫ εt

0

((s+ ∆)H−
1
2 − sH− 1

2 )ds = pcε−
1
2 (1 + hε(t)) (14)

where hε is defined as above. Then

ψ2(pε−
1
2 , εt) =

∫ εt

0

cα(εt− s)α−1(
1

2
ψ1(pε−

1
2 , s)2 + ψ1(pε−

1
2 , s)νψ2(pε−

1
2 , s) +

1

2
ν2ψ2(pε−

1
2 , s)2)ds

= ε

∫ t

0

cα(εt− εs)α−1(
1

2
ψ1(pε−

1
2 , εs)2 + ψ1(pε−

1
2 , εs)νψ2(pε−

1
2 , εs) +

1

2
ν2ψ2(pε−

1
2 , εs)2)ds

= εα
∫ t

0

cα(t− s)α−1(
1

2
(pcε−

1
2 (1 + hε(s)))

2 + pcε−
1
2 (1 + hε(s))νψ2(pε−

1
2 , εs) +

1

2
ν2ψ2(pε−

1
2 , εs)2)ds

for t ∈ [0, 1
εTψ2

(ε−
1
2 p)). Multiplying by

√
ε and cancelling powers of ε, we see that ψε2(p, t) :=√

εψ2(pε−
1
2 , t) satisfies

ψε2(p, t) := εH
∫ t

0

cα(t− s)α−1(
1

2
(pc(1 + hε(s))

2 + pc(1 + hε(s))νψ
ε
2(p, s) +

1

2
ν2ψε2(p, s)2)ds

7



i.e. ψε2(p, t) satisfies Dαψε2(p, t) = 1
2ε
H(pc(1 + hε(t)) + νψε2(p, t))2. Then we see that

E(epε
− 1

2 (VIX2
ε−ζ−VIX2

0)) = e
∫ ε
0
ξ0(ε−s) 1

2 (ψ1( p√
ε
,s)+νψ2( p√

ε
,s))2ds

= e
ε
∫ 1
0
ξ0(ε−εs) 1

2 (ψ1( p√
ε
,εs)+νψ2( p√

ε
,εs))2ds

= e
ε
∫ 1
0
ξ0(ε−εs) 1

2 (pcε−
1
2 (1+hε(t))+νψ2( p√

ε
,εs))2ds

= e
∫ 1
0
ξ0(ε−εs) 1

2 (pc(1+hε(t))+νψ
ε
2(p,s))2ds . (15)

εH and hε(t) → 0 as ε → 0, so we expect ψε2(t) to tend to zero as well. To use Theorem 13.1.1 in
[GLS90] to prove this, we first need to verify uniqueness for the solution ψε, which we can do using
the general argument given in Appendix A.

From Theorem 13.1.1 i) in [GLS90] (as above) we know that ψε2(p, .) converges uniformly to zero
on any compact interval, and ψε2(p, t) is continuous in ε and t on {(ε, t) : ε ∈ [0, 1), 0 ≤ t < T ∗ε (p)}.
Then using (15) and the bounded convergence theorem and the continuity of ξ0(t) at t = 0 we see that

lim
ε→0

E(epε
− 1

2 (VIX2
ε−ζ−VIX2

0)) = e
1
2p

2V0c
2

for all p ∈ R, and since ζ = O(ε) the limit is unchanged if we remove ζ here. Finally, since Theorem
13.1.1 in [GLS90] is multi-dimensional, we can apply it to (Re(ψ), Im(ψ)) with p replaced by ik with
k ∈ R as we do in section 5 in [FGS21]. The result then follows from Lévy’s convergence theorem.

We also have the following asymptotic estimate for the small-time behaviour of VIX futures which
will be needed for the implied volatility asymptotics below.

Lemma 2.5 E(VIXT −VIX0) = O(
√
T ) as T → 0.

Proof. Recall that VIX2
ε − VIX2

0 − ζ = cX̃ε + (f ∗ X̃)ε from (8) where ζ = O(ε) and f(s) :=

c1α((s+ ∆)H−
1
2 − sH− 1

2 ) and setting dX̂t :=
∫ t

0

√
V0(ρdWs + ρ̄dBs) and ε = t, we see that

E((VIX2
t − VIX2

0 − ζ)2)
1
2 = E((cX̃t + (f ∗ X̃)t)

2)
1
2

≤ E([c(X̃t − X̂t) + (f ∗ (X̃ − X̂))t]
2)

1
2 + E((cX̂t + (f ∗ X̂)t)

2)
1
2

≤ cE((X̃t − X̂t)
2)

1
2 + E((f ∗ (X̃ − X̂))2

t )
1
2 + c

√
V0

√
t

+ E((

∫ t

0

f(t− s)
∫ s

0

√
V0dWuds)

2)
1
2 .

Using stochastic Fubini we can re-write the final term as E((
√
V0

∫ t
0

∫ t
u
f(t − s)dsdWu)2)

1
2 = O(t) 2.

We also note that

E((X̃t − X̂t)
2) =

∫ t

0

E((
√
Vs −

√
V0)2)ds =

∫ t

0

(ξ0(s) + 2
√
V0E(

√
Vs) + V0)ds

≤
∫ t

0

(ξ0(s) + 2
√
V0E(Vs)

1
2 + V0)ds

≤
∫ t

0

(ξ0(s) + 2
√
V0ξ0(s)

1
2 + V0)ds ∼ 4V0t (16)

as t→ 0, and for the convolution term (from Jensen) we see that

E((f ∗ (X̃ − X̂))2
t )

1
2 = E((t · 1

t

∫ t

0

f(t− s)(X̃s − X̂s)ds)
2)

1
2 ≤ t

∫ t

0

f(t− s)2E((X̃s − X̂s)
2)ds = O(t) .

using (16) and the fact that f ∈ L2.

Putting all this together, we see that 1√
t
E((VIX2

t − VIX2
0 − ζ)2)

1
2 ≤ c̄ for some constant c̄ > 0

and t sufficiently small, and since ζ = O(t) we can remove the ζ term and the result still holds.

Thus ΥT :=
VIX2

T −VIX2
0√

T
is U.I., and (from Lemma 2.4) we know that ΥT

w→ c
√
V0Z as ε → 0, where

Z ∼ N(0, 1).
Then from (7) and the Ito isometry we know that

E((VIX2
T −VIX2

0)2)
1
2 ≤ E((VIX2

T −
1

∆

∫ T+∆

T

ξ0(u)du)2)
1
2 + | 1

∆

∫ T+∆

T

ξ0(u)du−VIX2
0|

= c1(

∫ T

0

((T + ∆− s) 1
2 +H − (T − s) 1

2 +H)2ξ0(s)ds)
1
2 + |ζ| → 0 (17)

2can easily check this in Mathematica
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as T → 0, so VIX2
T → VIX2

0 in L2 and hence also in probability.

Now define YT := 1
VIXT+VIX0

. Then YT is a continuous function of VIX2
T so (by the continuous

mapping theorem) YT → Y0 (a constant) in probability, and clearly YT ≤ 1
VIX0

. Note that VIXT−VIX0√
T

=

ΥTYT , and from above we know that ΥT
w→ c
√
V0Z. From the general standard result that if Xn

w→X
and Yn → c (a constant) in probability, then (Xn, Yn)

w→ (X, c), we see that (ΥT , YT ) tends weakly to
(c
√
V0Z, Y0), and from the continuous mapping theorem ΥTYT tends weakly to Y0Z. Moreover, YT

is uniformly bounded so ΥTYT is also U.I. Then by Theorem 3.5 in Billingsley[Bil99], E(ΥTYT ) →
Y0E(Z) = 0.

Corollary 2.6 If σ̂VIX(K,T ) denotes the implied volatility of a VIX call or put option with strike K,
we see that

σ̂VIX(x) := lim
T→0

σ̂VIX(VIX0e
xTH−

1
2 , T ) =

|x|√
2J(2VIX2

0x)
(18)

for x ∈ R, where J is the rate function introduced in the main Theorem 2.1.

Proof. Let CBS(S,K, σ, T ) denote the usual Black-Scholes call option formula with zero interest rate
and dividend. Then can easily verify that for any b ∈ R

lim
T→0

T 2H logCBS(VIX0 + b
√
T ,VIX0e

xT
1
2
−H
, σ, T ) = − x2

2σ2

so from Lemma 2.5 (and using that CBS is monotonic in its first argument) we see that

lim
T→0

T 2H logCBS(E(VIXT ),VIX0e
xT

1
2
−H
, σ, T ) = − x2

2σ2
.

For any δ ∈ (0, J(2VIX2
0x)), we can then choose σ so that −J(2VIX2

0x) = − x2

2σ2 − δ. Then from
Corollary 2.3

−J(2VIX2
0x) = lim sup

T→0
T 2H logE((VIXT −VIX0e

xT
1
2
−H

)+)

= lim sup
T→0

T 2H logCBS(E(VIXT ),VIX0e
xT

1
2
−H
, σ̂VIX(x, T ), T ) (by definition of σ̂VIX(x, T ))

< lim
T→0

T 2H logCBS(E(VIXT ),VIX0e
xT

1
2
−H
, σ, T ) = − x2

2σ2
.

Since CBS(.) is monotonically increasing in the σ argument, we see that lim supT→0 σ̂VIX(x, T ) ≤ σ.
Finally we let δ → 0, and we proceed similarly for the lower bound.

2.3.1 Small log-moneyness expansions

Using section 3.4 in [FGS21], we obtain the following small-moneyness expansion

Λ̄ρ=1(p) =
1

2
V0p

2 +
V0ν

2Γ(2 + α)
p3 + O(p3)

(Λ̄ρ=1)∗(x) =
1

2

x2

V0
− νx3

2V 2
0 Γ(2 + α)

+ O(x4)

and combining this with (18) we find that

σ̂VIX(x) =
c̄ν
√
V0

2VIX2
0

+
νx

2
√
V0Γ(2 + α)

+
1

V
3
2

0

VIX2
0να∆1−αΓ(α)

Γ(2 + α)2Γ(1 + 2α) + Γ(1 + α)2(4Γ(2 + α)2 − 6Γ(2 + 2α))

4Γ(1 + α)2Γ(2 + α)2Γ(2 + 2α)
x2 + O(x3)

(19)

where c̄ := 1
Γ(α)α∆α−1 and we see that the linear skew term is positive, and note there is no VIX smile

if ν = 0, since in this case Vt is constant. Moreover, since the fraction in front of the x2 term only
depends on α, we can readily verify from a graph that the O(x2) convexity term is strictly negative
(see Figure 1 below), which is consistent with what is observed in practice, see e.g. [JMP21] and plots
in [GJR20],[Guy20],[DeM18],[HJT20] et al. for more on this point. Since V0 is already fixed from ξ0()
i.e. V0 = ξ0(0) we see that we cannot independently fit the overall level and the skew of the VIX
smile in the small-T limit. This issue is addressed in the companion article [FS21] by the addition of
an independent CGMY-jump component to the model which allows the SPX and VIX short-maturity
smiles to decouple in some sense.
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Figure 1: Here we have plotted the factor Γ(2+α)2Γ(1+2α)+Γ(1+α)2(4Γ(2+α)2−6Γ(2+2α))
4Γ(1+α)2Γ(2+α)2Γ(2+2α) which appears in

the convexity term in (19) as a function of α, and we see that this factor is strictly negative for all
admissible α values.

2.3.2 The Edgeworth regime

Proceeding as in [FSV21], we have also formally verified the following asymptotic behaviour for VIX
options in the Edgeworth regime under driftless rough Heston model :

σ̂VIX(
√
V0e

x
√
T , T ) =

ν√
V0

(
∆α−1

2αΓ(α)
+

1

2Γ(2 + α)
xTH + o(TH))

and we see that the at-the-money and skew terms are essentially the same as in the large deviations
regime in (19). Since the answer is not surprising, we omit the details of the proof. To make this
rigorous would require very fiddly tail estimates with Fourier arguments as in [EFGR19], which is
beyond the scope of this article.

2.4 Fourier inversion formula for VIX calls for T > 0

Note we have the following Fourier inversion formula for exact pricing of VIX call options, where we
have used Cauchy and Fubini’s theorem in the first and second lines respectively:

E((VIXT −K)+) =
1

2π

∫ ∞
0

(v
1
2 −K)+

∫ ∞
−∞

e−i(u−ia)vφ(u− ia, T )dudv

=
1

2π

∫ ∞
−∞

φ(u− ia, T )

∫ ∞
0

(v
1
2 −K)+e−i(u−ia)vdvdu

=
1

2
√
π

∫ ∞
−∞

φ(u− ia, T )
Erfc(K

√
a+ iu)

2(a+ iu)
3
2

du

where φ(u, T ) := eV0I
1−αψ2(iu,T ) is the characteristic function of VIX2

T , Erfc is the complementary error
function and a > 0 such that ia is inside the strip of analyticity of φ(., T ) (the condition Tψ2

(Re(a)) > T
is sufficient for this, by the same reasoning as in the proof of Theorem 7 of [GGP19]).
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Figure 2: Here we have plotted Λ̄ρ=1(pc) in blue using an Adams scheme with 2000 time steps applied

to the driftless rough Heston VIE in Eq 24 in [FGS21] with ρ = 1 versus T 2H logE(e
p
Tα (VIX2

T −V0))
(red) obtained using Monte Carlo for T = .0001, ξ0(t) = V0 = .04, H = .25, ν = .25, and ∆ = 1/12
with 100,000 simulations, and we see both quantities are in close agreement.
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Figure 3: Here we have computed σ̂(x) using the same method as for Figure 3 in [FGS21] with 15 terms
(blue) verses the VIX implied volatility computed using Monte Carlo (crosses) for T = .0001, V0 = 1,
H = .25, ν = .25 and ∆ = 1 with 10,000,000 simulations and 200 time steps. It is difficult to verify
exact agreement here since we can no longer exploit the usual Romano-Touzi/Willard conditioning
trick for the Monte Carlo since ρ is effectively 1 here, and because of this the MC results for the left
portion of the smile are less accurate since there is a significantly lower exponentially small probability
that these (put) options expire in-the-money.
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3 Ergodic behaviour of the Rough Heston model

In this section we return to the standard rough Heston model

Vt = V0 +
1

Γ(α)

∫ t

0

(t− s)α−1(λ(θ − Vs)ds+ ν
√
VsdWs)

with non-zero mean reversion, i.e. λ > 0. Then from Theorem 4.3 in [ALP19], we know that

E(euVT ) = euV0 +λ(θ−V0)
∫ T
0
ψ(s,u)ds+ 1

2V0ν
2
∫ T
0
ψ(s,u)2ds (20)

for Re(u) ∈ [0, 1], where

ψ = uK + (−λψ +
1

2
ν2ψ2) ∗K = uK + Iα(−λψ +

1

2
ν2ψ2) (21)

and K(t) = 1
Γ(α) t

α−1, so f = I1ψ satisfies

f = uI1K + Iα+1(−λψ +
1

2
ν2ψ2) = ut2α−1 Γ(α)

Γ(α)
− Iαλf +

1

2
ν2Iα+1ψ2 .

The VIE in (21) is approximately linear for t � 1 since ψ(t) → 0 as t → ∞ because K(t) → 0, so
ignoring the quadratic term in (21) and taking the Laplace transform of both sides, we see that

ψ̂ = uz−
1
2−H − λψ̂z−

1
2−H

so ψ̂(z) = u
λ

λ
zα+λ which is the Laplace transform of ψ∞(t) := utα−1Eα,α(−λtα) = u

λλt
α−1Eα,α(−λtα),

where Eα,β(z) denotes the Mittag-Leffler function. From Appendix A in [ER19], we know that

ψ∞(t) ∼ u

λ

α

λΓ(1− α)
t−(α+1)

as t→∞, so ψ∞ and (ψ̂∞)2 are clearly integrable at ∞. Hence from Lévy’s convergence theorem, we
expect that VT tends weakly to a random variable V∞ as T →∞ with characteristic function

E(eiaV∞) = eiaV0 +λ(θ−V0)
∫∞
0
ψ(s,ia)ds+ 1

2V0ν
2
∫∞
0
ψ(s,ia)2ds

for a ∈ R. This may have implications for pricing European options if the V process evolves on a fast
time scale, i.e.

V
(ε)
t = V

(ε)
0 +

1

Γ(α)

∫ t

0

(t− s)α−1(λε−α(θ − V (ε)
s )ds+ νε−H

√
V

(ε)
s dWs)

for ε� 1 (see Appendix B in [FGS21] to see why the powers of ε take this form), and we expect the lead-

ing order price of a European option with strike K and maturity T to be CBS(S0,K, (
∫∞

0
vΠ(dv))

1
2 , T )

as ε → 0, where Π(dv) is the law of V∞, and CBS(S,K, σ, T ) is the usual Black-Scholes formula
for a call option with zero interest rates (see e.g. Fouque et al.[FPSS11] for background on singular
perturbation theory for the H = 1

2 case).

As a sanity check, for the case H = 1
2 , K(t) = 1 in (21), so the right hand side of (21) is just the

term multiplying V0 in the exponent in (20), but since ψ(t) → 0 as t → ∞, the left hand side (and
hence) also the right hand side of (21) tends to zero. Hence we are just left with

E(eiaV∞) = eλθ
∫∞
0
ψ(s,ia)ds

i.e. the law of V∞ is independent of V0 for H = 1
2 as we already know (it is an open question whether

this remains true for H < 1
2 ). For H = 1

2 , (21) is just an ODE, which we can solve explicitly to get

ψ(t, u) = 2uλ
uν2−etλ(uν2−2λ)

, from which we find that

E(euV∞) = e
θλ
ν2 (log 4+2 log λ

2λ−uν2 )
= 4

θλ
ν2 (

λ

2λ− uν2
)

2θλ
ν2

which is the mgf of a Gamma random variable with density Π(x) =
4
θλ
ν2 e
− 2xλ
ν2 ( xλ

ν2 )
2θλ
ν2

xΓ( 2θλ
ν2 )

for x > 0 (this

result is of course well known).

Remark 3.1 For a log-normal rough Bergomi-type model where Vt = V0e
∫ t
0
κ(t−s)dWs with Gamma

kernel κ(t) = νtH−
1
2 e−λt, we can easily verify that log V∞ ∼ N(0, σ2

∞), where σ2
∞ = limt→∞

∫ t
0
κ(t −

s)2ds =
∫∞

0
κ(s)2ds = 4−Hλ−2HΓ(2H), so V∞ is log-normal.
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Figure 4: Here we have plotted the numerical solution to the VIE (21) using an Adams scheme (grey)

verses the linearized approximation ψ̂∞ (blue) for ν = .25, λ = 1 and H = .25, and in the second
graph we have plotted the ratio of these two terms.
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A Uniqueness of solutions to fractional Riccati VIEs

Following Theorem 3.1.2 and 3.1.4 in Chapter 3 in [Brun17], we consider a general non-linear VIE of
the form

u(t) =

∫ t

0

1

Γ(α)
(t− s)H− 1

2 (
1

2
(p+ h(s))2 + ν(p+ h(s))u(s) +

1

2
ν2u(s)2)ds (A-1)

where h is bounded and continuous, and suppose we have two continuous solutions u and u2 to (A-1)
on some interval [0, T ]. Then

|u2(t)− u(t)| ≤
∫ t

0

(t− s)H− 1
2L|u2(s)− u(s)|ds

for some local Lipschitz constant L (since the function 1
2 (p+ h(s))2 + ν(p+ h(s))u+ 1

2ν
2u2 is locally

Lipschitz in u), and we write this more succinctly as ∆ ≤ −k ∗ ∆, where k(t) := −LtH− 1
2 and

∆ = |u2−u1|. The Laplace transform of k is k̂(λ) = −cλ−α where c = LΓ(α), and (from the definition
of Eq 2.11 in [ALP19]) the resolvent r of k satisfies

k ∗ r = k − r

which implies that

k̂r̂ = k̂ − r̂

and hence

r̂(λ) = 1 − (1 + k̂(λ))−1 =
c

c− λα
.

Then r̂ is the Laplace transform of r(t) = −ctα−1Eα,α(ctα) which is non-positive (see e.g. Table 1
in [ALP19] with c 7→ −c and end of proof of Proposition 2.1 in [FGS21]). Then using the following
Lemma (taken from Appendix A.2 in [ACLP19]), we see that in fact ∆ ≡ 0, so we have uniqueness.

Lemma A.1 (See Appendix A.2 in [ACLP19]. Suppose f, g, k ∈ L1([0, T ]). Assume k has non-
positive resolvent r. Then if f ≤ g − k ∗ f , then f ≤ g − r ∗ g.

Proof. Write f +k ∗f = g−h for h ≥ 0, so f̂ + k̂f̂ = ĝ− ĥ . Then from the definition of the resolvent:
k̂r̂ = k̂ − r̂ we find that

f̂ +
r̂

1− r̂
f̂ = ĝ − ĥ

⇒ f̂(1− r̂) + r̂f̂ = f̂ = ĝ − ĥ− r̂(ĝ − ĥ)

so f = g − h− r ∗ (g − h) ≤ g − r ∗ g .

B Derivation of the VIE

Theorem B.1 (minor variant of Theorem 7.1 in [ALP19] without their restriction that Re(ψ1) ∈ [0, 1]
and no drift term). Consider the d-dimensional stochastic convolution equation:

Xt = X0(t) +

∫ t

0

K̃(t− s)σ(Xs)dWs

so E(Xt) = X0(t) for ξ ∈ L1, where K̃ ∈ L2([0, T ];Rd×d), a(x) = σT (x)σ(x) = x1A
1 + ... + xdA

d,
Ai is a (symmetric) d × d matrix for each i = 1..d, A(u) = (uA1uT , uA2uT , ..., uAduT ), W is a
d-dimensional Brownian motion, and

ψ = uK̃ + (f +
1

2
A(ψ)) ∗ K̃ (B-1)

for f ∈ L1 and let Y satisfy dYt = − 1
2ψ(T − t)2σ(Xt)

2dt+ ψ(T − t)σ(Xt)dWt with

Y0 = uX0(T ) + (f ∗X0)T +
1

2

∫ T

0

ψ(T − s)a(X0(t))ψ(T − s)T ds .

Then if ψ is bounded on [0, T ], then eY is an FWt -martingale on [0, T ] and we have the exponential-
affine formula:

E(euXT+(f∗X)T |FWt ) = eYt .
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For our specific case of interest for the Rough Heston model, f2 = 0, u2 = 0 and X0(t) = (0, ξ0(t)) so
we can re-write (B-1) in component form as

ψ1 = u1 + f1 ∗ 1

ψ2 = u2K +
1

2
(ψ2

1 + 2νψ1ψ2 + ν2ψ2
2) ∗K = IαF (ψ1, ψ2)

where K(t) = tα−1

Γ(α) and F (ψ1, ψ2) = 1
2 (ψ1 + νψ2)2, and Y0 = uX0(T ) + (f ∗ X0)T + 1

2

∫ T
0
ψ(T −

s)a(X0(T ))ψ(T −s)T ds = I1(ξ0(T − (.))Dαψ2)(T ) , which further simplifies to the familiar expression
V0I

1−αψ2(T ) if ξ0(.) is flat.

Proof. We let Ft := FWt throughout, and we first note that

E(Xs|Ft) = X0(s) +

∫ s∧t

0

K̃(s− v)dMv (B-2)

where dMt = σ(Xt)dWt. Now let

Yt = E(uXT +

∫ T

0

f(T − s)Xsds|Ft) +
1

2
(

∫ T

0

−
∫ t

0

)ψ(T − s)a(E(Xs|Ft))ψ(T − s)T ds

for t ≤ T . Using (B-2) and the affine property of a(.) we can re-write Yt in the form Y0 + (...) as

Yt = uX0(T ) + (f ∗X0)(T ) +
1

2

∫ T

0

ψ(T − s)a(X0(s))ψ(T − s)T ds

+ u

∫ t

0

K̃(T − s)dMs +

∫ T

0

f(T − s)
∫ s∧t

0

K̃(s− v)dMvds +
1

2

∫ T

0

ψ(T − s)a(

∫ s∧t

0

K̃(s− v)dMv)ψ(T − s)T ds .

− 1

2

∫ t

0

ψ(T − s)a(Xs)ψ(T − s)T ds

(the sum of the three terms on the right hand side in the first line here is Y0). From Fubini we see
that the fifth term here can be re-written as∫ T

0

f(T − s)
∫ s∧t

0

K̃(s− v)dMvds =

∫ t

0

∫ T

v

f(T − s)K̃(s− v)dsdMv .

Similarly∫ T

0

ψ(T − s)a(

∫ s∧t

0

K̃(s− v)dMv)ψ(T − s)T ds =

∫ T

0

ψ(T − s)(
d∑
i=1

Ai
∫ s∧t

0

K̃(s− v)dM i
v)ψ(T − s)T ds

=

∫ t

0

∫ T

v

A(ψ(T − s))K̃(s− v)dsdMv

and recall that A(u) = (uA1(u)uT , uA2(u)uT , ..., uA(u)duT ). Thus

Yt = Y0 + u

∫ t

0

K̃(T − v)dMv +

∫ t

0

∫ T

v

f(T − s)K̃(s− v)dsdMv +
1

2

∫ t

0

∫ T

v

A(ψ(T − s))K̃(s− v)dsdMv

− 1

2

∫ t

0

ψ(T − s)a(Xs)ψ(T − s)T ds

= Y0 +

∫ t

0

(uK̃(T − v) +

∫ T

v

f(T − s)K̃(s− v)ds +
1

2

∫ T

v

A(ψ(T − s))K̃(s− v)ds)dMv

− 1

2

∫ t

0

ψ(T − s)a(Xs)ψ(T − s)T ds

and we note that ∫ T

v

f(T − s)K̃(s− v)ds =

∫ T−v

0

f(T − (s+ v))K̃(s)ds = (K̃ ∗ f)(T − v)

and similarly

∫ T

v

A(ψ(T − s))K̃(s− v)ds = (A(ψ) ∗ K̃)(T − v)

so

Yt = Y0 +

∫ t

0

(uK̃(T − v) + (f ∗ K̃)(T − v) +
1

2
(A(ψ) ∗ K̃)(T − v))dMv −

1

2

∫ t

0

ψ(T − s)a(Xs)ψ(T − s)T ds .
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Comparing this expression to the “Driftless” Ricccati eq:

ψ = uK̃ + (f +
1

2
A(ψ)) ∗ K̃

we see that

Yt = Y0 +

∫ t

0

ψ(T − s)σ(Xs)dWs −
1

2

∫ t

0

ψ(T − s)a(Xs)ψ(T − s)T ds

so eYt is a local martingale. If eY is a true martingale on [0, T ] (see the end of the proof for clarification
on this point), then E(eYT |Ft) = eYt and in particular

E(eYT ) = E(euXT+(f∗X)T ) = eY0 = euX
0(T ) + (f∗X0)(T ) + 1

2

∫ T
0
ψ(T−s)a(X0(s))ψ(T−s)T ds . (B-3)

In our specific case Xt =

(
X̃t

Vt

)
with kernel K̃ =

(
1 0
0 K

)
and X0(t) = (0, ξ0(t)). Then σ(Xt) =

√
Vt

(
0 1
0 ν

)
so

a(Xt) := σ(Xt)σ
T (Xt) = Vt

(
0 1
0 ν

)(
0 0
1 ν

)
= Vt

(
1 ν
ν ν2

)
which implies that A1 = 0 and

A2(ψ) =
(
ψ1 ψ2

)(1 ν
ν ν2

)(
ψ1

ψ2

)
= ψ2

1 + 2νψ2 + ν2ψ2
2 .

Then the Riccati-Volterra eq becomes:

ψ =
(
ψ1 ψ2

)
= uK̃ + (f +

1

2
A(ψ)) ∗ K̃

= (u1, u2)

(
1 0
0 K

)
+ ((f1, 0) +

1

2
(0, ψ2

1 + 2νψ1ψ2 + ν2ψ2
2)) ∗

(
1 0
0 K

)
which we can re-write as

ψ1 = u1 + f1 ∗ 1

ψ2 = u2K +
1

2
(ψ2

1 + 2νψ1ψ2 + ν2ψ2
2) ∗K = u2K + IαF (ψ1, ψ2) . (B-4)

and

Y0 = u2ξ0(T ) + (f ∗X)0 +
1

2

∫ T

0

ψ(T − s)a(X0(s))ψ(T − s)T ds

and

1

2
ψ(T − s)a(X0(t))ψT (T − s) = ξ0(t)(ψ1(T − s), ψ2(T − s))

(
1 ν
ν ν2

)(
ψ1(T − s)
ψ2(T − s)

)
= ξ0(t)(ψ2

1 + 2νψ1ψ2 + ν2ψ2
2)

so

Y0 = u2ξ0(T ) + (f ∗X)0 +
1

2

∫ T

0

ψ(s)a(X0(T − s))ψ(s)T ds

= u2ξ0(T ) + (f ∗X)0 +
1

2

∫ T

0

ξ0(T − s)(ψ1(s)2 + 2νψ1(s)ψ2(s) + ν2ψ2(s)2)ds

= u2ξ0(T ) + (f ∗X)0 + I1(ξ(T − (.))Dα(ψ2 − u2K))(T )

= (f ∗X)0 + I1(ξ(T − (.))Dαψ2)(T )

(where we have used (B-4) for the second equality and (I1−αK)(t) = 1 for the final equality.) which
is the exponent in (B-3). Moreover

Yt = ξ0(T ) +

∫ t

0

ψ(T − s)σ(Xs)dWs −
1

2

∫ t

0

ψ(T − s)a(Xs)ψ(T − s)T ds

so

dYt = ψ(T − t)σ(Xt)dWt −
1

2
ψ(T − t)a(Xt)ψ(T − t)T dt

=
√
Vt(ψ1(T − t) + νψ2(T − t))dW 2

t −
1

2
Vt(ψ1(T − t)2 + νψ1(T − t))2dt .

Then from Lemma 7.3 in [ALP19], eY is a genuine FWt -martingale on [0, T ] if ψ1 + νψ2 ∈ L∞([0, T ])
and since f is integrable, ψ2 ∈ L∞ implies ψ1 + νψ2 ∈ L∞, and ψ2 ∈ L∞ if T ∗(u) > T (where T ∗(u) is
the explosion time for ψ2) since the solution to the VIE for ψ2 is continuous up to the explosion time.
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C Uniform moment bound

Lemma C.1 (see also Lemma 3.1 in [ALP19] and Lemma A.1 in [JMP20]). For m ≥ 2

sup
t≤T

E(V mt ) ≤ cm,T

for some finite constant cm,T which depends on m and T and the model parameters.

Proof. Setting K(t) = tα−1/Γ(α) and using the Bukholder-Davis-Gundy inequality applied to the
martingale Mu :=

∫ u
0
K(t− s)

√
VsdWs at t = u, we see that

E(V mt ) = E((ξ0(t) +

∫ t

0

K(t− s)
√
VsdWs)

m) ≤ 2mξ0(t)m + 2mCmE((

∫ t

0

K(t− s)2Vsds)
1
2m)

= 2mξ0(t)m + 2mCmE((

∫ t

0

K(t− s)2− 4
mK(t− s) 4

mVsds)
1
2m)

≤ 2mξ0(t)m + 2mCm‖K‖m−2
2

∫ t

0

K(t− s)2E(V
1
2m
s )ds

≤ 2mξ0(t)m + 2mCm‖K‖m−2
2

∫ t

0

K(t− s)2E(a(1 + Vs)
m)ds

where we have used Hölder’s inequality with p = 1
2m and q = (1 − 1/p)−1 in the final line as in

Appendix A.2 in [JMP20], so f(t) := E(V mt ) satisfies

f(t) ≤ c + c

∫ t

0

K(t− s)2f(s)ds = c + c

∫ t

0

(t− s)α2−1f(s)ds

for some constant c > 0 and t ∈ [0, T ], where α2 = 2H. Using Lemma A.1, we know that

f(t) ≤ c − (r ∗ c)(t)

= c + c

∫ t

0

(t− s)α2−1Eα2,α2(c̃(t− s)α)cds < ∞

where r is the resolvent of ctα2−1 given by r̂(t) = −c̃tα2−1Eα2,α2
(c̃tα2) where c̃ = cΓ(α2). Eα2,α2

(c̃(t−
s)α2) is bounded on [0, t], so f(t) ≤ const.×

∫ t
0
(t− s)α2−1c̃s−α2ds <∞ for all s ∈ [0, t].

D Asymptotics for VIX call options

From Jensen’s inequality, we know that for any q ≥ 1 we have

(VIX2
T )q = (

1

∆

∫ T+∆

T

ξT (u)du)q ≤ 1

∆

∫ T+∆

T

ξT (u)qdu

and hence

E(VIX2q
T ) ≤ 1

∆

∫ T+∆

T

E(ξT (u)q)du =
1

∆

∫ T+∆

T

E(E(Vu|FT )q)du

≤ 1

∆

∫ T+∆

T

E(V qu )du (D-1)

which will be needed further down.

• Lower bound. We first note that for x fixed and any δ ∈ (0, x), exT
1
2
−H
≤ 1 + (x+ δ)T

1
2−H for

T sufficiently small. Recall that VIX2
0 = 1

∆

∫ T+∆

T
ξT (u)du and we set kx,δ := VIX0(x + δ). We

first note that for δ > 0 and T = T (δ) sufficiently small, exT
1
2
−H
≤ 1 + (x+ δ)xT

1
2−H . Thus for

T = T (δ) sufficiently small

E((VIXT −VIX0e
xT

1
2
−H

)+) ≥ E((VIXT −VIX0(1 + (x+ δ)T
1
2−H)+)

= T
1
2−HE((

VIXT −VIX0

T
1
2−H

− kx,δ)+)

≥ δT
1
2−HE(1 VIXT−VIX0

T
1
2
−H

>kx,δ+δ
)

= δT
1
2−HP(VIXT > VIX0 + T

1
2−H(kx,δ + δ))

= δT
1
2−H P(VIX2

T > VIX2
0 + 2VIX0 (kx,δ + δ)T

1
2−H + (kx,δ + δ)2T 1−2H) .

18



But for T = T (δ) sufficiently small, the right hand side here is greater than or equal to

δT
1
2−H P(VIX2

T −VIX2
0 > 2VIX0 (kx,δ + 2δ)T

1
2−H)

= δT
1
2−H P(

1

∆

∫ T+∆

T

ξT (u)du− 1

∆

∫ T+∆

T

ξ0(u)du > 2VIX0 (kx,δ + 2δ)T
1
2−H) .

Then using the LDP and the continuity of J we see that

lim inf
T→0

T 2H logE((VIXT −VIX0 e
xT

1
2
−H

)+) ≥ −J(2VIX0(kx,δ + 2δ)) = −J(2VIX2
0 + 2δVIX0 + 4δVIX0)) .

We then let δ → 0 and again use the continuity of the rate function J(x) to obtain the required
lower bound.

• Upper bound. From Hölder’s inequality, we note that for q > 1

E((VIXT −VIX0 e
xT

1
2
−H

)+) ≤ E((VIXT −VIX0(1 + xT
1
2−H)))+

= E((VIXT −VIX0(1 + xT
1
2−H))+1

VIXT≥VIX0 (1+xT
1
2
−H)

)

≤ E[(VIXT −VIX0(1 + xT
1
2−H))q+]

1
q E(1

VIXT≥VIX0 +xT
1
2
−H )1− 1

q .

Thus

T 2H logE((VIXT −VIX0 (1 + xT
1
2−H))+)

≤ T 2H

q
logE[(VIXT −VIX0 (1 + xT

1
2−H))q+] + T 2H(1− 1

q
) logP(VIXT ≥ VIX0 (1 + xT

1
2−H))

≤ T 2H

q
logE(VIXq

T ) + T 2H(1− 1

q
) logP(VIXT ≥ VIX0 (1 + xT

1
2−H))

≤ T 2H

q
log(E(VIX2q

T )
1
2 ) + T 2H(1− 1

q
) logP(VIXT ≥ VIX0 (1 + xT

1
2−H))

≤ T 2H

q

1

2
log(

1

∆

∫ T+∆

T

E(V qu )du) + T 2H(1− 1

q
) logP(VIX2

T ≥ VIX2
0(1 + xT

1
2−H)2)

(by (D-1))

≤ T 2H

q

1

2
log(

1

∆

∫ T+∆

T

(E(V qu )
1
q )qdu + T 2H(1− 1

q
) logP(VIX2

T ≥ VIX2
0(1 + 2xT

1
2−H))

(using Minkowski applied to E((Vu)q))

≤ T 2H

q

1

2
log(c

1
q

q,T )q + T 2H(1− 1

q
) logP(VIX2

T ≥ VIX2
0(1 + 2xT

1
2−H)

for some finite constant cq,T depending on q and T , where we have used Lemma C.1 in the final
line. Letting T → 0 in the final line and using the LDP and the continuity of J , and then letting
q →∞, we see that

lim sup
T→0

T 2H logE((VIXT −VIX0 (1 + xT
1
2−H))+) ≤ −J(2VIX2

0x) .
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